Геометрическая проекция вектора на ось. Векторы и операции над векторами

§ 3. Проекции вектора на оси координат

1. Нахождение проекций геометрически.

Вектор
- проекция вектора на ось OX
- проекция вектора на ось OY

Определение 1. Проекцией вектора на какую-либо ось координат называется взятое со знаком "плюс" или "минус" число, соответствующее длине отрезка, расположенного между основаниями перпендикуляров, опущенных из начала и конца вектора на ось координат.

Знак проекции определяется так. Если при движении вдоль оси координат происходит перемещение от точки проекции начала вектора к точке проекции конца вектора в положительном направлении оси, то проекция вектора считается положительной. Если же - противоположно оси, то проекция считается отрицательной.

По рисунку видно, что если вектор ориентирован как-то противоположно оси координат, то его проекция на эту ось отрицательна. Если вектор ориентирован как-то в положительном направлении оси координат, то его проекция на эту ось положительна.


Если вектор перпендикулярен оси координат, то его проекция на эту ось равна нулю.
Если вектор сонаправлен с осью, то его проекция на эту ось равна модулю вектора.
Если вектор противоположно направлен оси координат, то его проекция на эту ось по абсолютной величине равна модулю вектора, взятому со знаком минус.

2. Наиболее общее определение проекции.


Из прямоугольного треугольника ABD : .

Определение 2. Проекцией вектора на какую-либо ось координат называется число, равное произведению модуля вектора и косинуса угла, образованного вектором с положительным направлением оси координат.


Знак проекции определяется знаком косинуса угла, образованного вектором с положительным направлением оси.
Если угол острый, то косинус имеет положительный знак, и проекции - положительны. Для тупых углов косинус имеет отрицательный знак, поэтому в таких случаях проекции на ось отрицательны.
- поэтому для векторов, перпендикулярных к оси, проекция равна нулю.

По физике за 9 класс (И.К.Кикоин, А.К.Кикоин, 1999 год),
задача №5
к главе «ГЛАВА 1. ОБЩИЕ СВЕДЕНИЯ О ДВИЖЕНИИ ».

1. Что называют проекцией вектора на координатную ось?

1. Проекцией вектора а на координатную ось называют длину отрезка между проекциями начала и конца вектора а (перпендикулярами, опущенными из этих точек на ось) на эту координатную ось.

2. Как связан вектор перемещения тела с его координатами?

2. Проекции вектора перемещения s на оси координат равны изменению соответствующих координат тела.

3. Если координата точки с течением времени увеличивается, то какой знак имеет проекция вектора перемещения на координатную ось? А если она уменьшается?

3. Если координата точки с течением времени увеличивается, то проекция вектора перемещения на координатную ось будет положительной, т.к. в этом случае мы будем идти от проекции начала к проекции конца вектора по направлению самой оси.

Если координата точки с течением времени будет уменьшаться, то проекция вектора перемещения на координатную ось будет отрицательной, т.к. в этом случае мы будем идти от проекции начала к проекции конца вектора против направляющей самой оси.

4. Если вектор перемещения параллелен оси X, то чему равен модуль проекции вектора на эту ось? А модуль проекции этого же вектора на ось У?

4. Если вектор перемещения параллелен оси Х, то модуль проекции вектора на эту ось равен модулю самого вектора, а его проекция на ось Y равна нулю.

5. Определите знаки проекций на ось X векторов перемещения, изображенных на рисунке 22. Как при этих перемещениях изменяются координаты тела?

5. Во всех нижеследующих случаях координата Y тела не изменяется, а координата Х тела будет изменяться следующим образом:

a) s 1 ;

проекция вектора s 1 , на ось Х отрицательна и по модулю равна длине вектора s 1 . При таком перемещении координата Х тела уменьшится на длину вектора s 1 .

b) s 2 ;

проекция вектора s 2 на ось X положительна и равна по модулю длине вектора s 1 . При таком перемещении координата Х тела увеличится на длину вектора s 2 .

c) s 3 ;

проекция вектора s 3 на ось Х отрицательна и равна по модулю длине вектора s 3 . При таком перемещении координата Х тела уменьшится на длину вектора s 3 .

d) s 4 ;

проекция вектора s 4 на ось X положительна и равна по модулю длине вектора s 4 . При таком перемещении координата Х тела увеличится на длину вектора s 4 .

e) s 5 ;

проекция вектора s 5 на ось Х отрицательна и равна по модулю длине вектора s 5 . При таком перемещении координата Х тела уменьшится на длину вектора s 5 .

6. Если значение пройденного пути велико, то может ли модуль перемещения быть малым?

6. Может. Это связано с тем, что перемещение (вектор перемещения) является векторной величиной, т.е. представляет собой направленный отрезок прямой, соединяющий начальное положение тела с его последующими положениями. А конечное положение тела (вне зависимости от величины пройденного пути) может находиться как угодно близко к первоначальному положению тела. В случае совпадения конечного и начального положений тела, модуль перемещения будет равен нулю.

7. Почему в механике более важен вектор перемещения тела, чем пройденный им путь?

7. Основной задачей механики является определение положения тела в любой момент времени. Зная вектор перемещения тела мы можем определить координаты тела, т.е. положение тела в любой момент времени, а зная только пройденный путь мы не можем определить координаты тела, т.к. мы не имеем сведений о направлении движения, а можем только судить о длине пройденного пути на данный момент времени.

Векторное описание движения является полезным, так как на одном чертеже всегда можно изобразить много разнообразных векторов и получить перед глазами наглядную «картину» движения. Однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, очень трудоёмко. Поэтому эти действия сводят к действиям с положительными и отрицательными числами – проекциями векторов.

Проекцией вектора на ось называют скалярную величину, равную произведению модуля проектируемого вектора на косинус угла между направлениями вектора и выбранной координатной оси.

На левом чертеже показан вектор перемещения, модуль которого 50 км, а его направление образует тупой угол 150° с направлением оси X. Пользуясь определением, найдём проекцию перемещения на ось X:

sx = s · cos(α) = 50 км · cos( 150°) = –43 км

Поскольку угол между осями 90°, легко подсчитать, что направление перемещения образует с направлением оси Y острый угол 60°. Пользуясь определением, найдём проекцию перемещения на ось Y:

sy = s · cos(β) = 50 км · cos( 60°) = +25 км

Как видите, если направление вектора образует с направлением оси острый угол, проекция положительна; если направление вектора образует с направлением оси тупой угол, проекция отрицательна.

На правом чертеже показан вектор скорости, модуль которого 5 м/с, а направление образует угол 30° с направлением оси X. Найдём проекции:

υx = υ · cos(α) = 5 м/c · cos( 30°) = +4,3 м/с
υy = υ · cos(β) = 5 м/с · cos( 120°) = –2,5 м/c

Гораздо проще находить проекции векторов на оси, если проецируемые векторы параллельны или перпендикулярны выбранным осям. Обратим внимание, что для случая параллельности возможны два варианта: вектор сонаправлен оси и вектор противонаправлен оси, а для случая перпендикулярности есть только один вариант.

Проекция вектора, перпендикулярного оси, всегда равна нулю (см. sy и ay на левом чертеже, а также sx и υx на правом чертеже). Действительно, для вектора, перпендикулярного оси, угол между ним и осью равен 90°, поэтому косинус равен нулю, значит, и проекция равна нулю.

Проекция вектора, сонаправленного с осью, положительна и равна его модулю, например, sx = +s (см. левый чертёж). Действительно, для вектора, сонаправленного с осью, угол между ним и осью равен нулю, и его косинус «+1», то есть проекция равна длине вектора: sx = x – xo = +s .

Проекция вектора, противонаправленного оси, отрицательна и равна его модулю, взятому со знаком «минус», например, sy = –s (см. правый чертёж). Действительно, для вектора, противонаправленного оси, угол между ним и осью равен 180°, и его косинус «–1», то есть проекция равна длине вектора, взятой с отрицательным знаком: sy = y – yo = –s .

На правых частях обоих чертежей показаны другие случаи, когда векторы параллельны одной из координатных осей и перпендикулярны другой. Предлагаем вам убедиться самостоятельно, что и в этих случаях тоже выполняются правила, сформулированные в предыдущих абзацах.

Определение 1. На плоскости параллельной проекцией точки А на ось l называется точка - точка пересечения оси l с прямой, проведенной через точку А параллельно вектору, задающему направление проектирования.

Определение 2. Параллельной проекцией вектора на ось l (на вектор) называется координата вектора, относительно базиса оси l, где точки и - параллельные проекции соответственно точек А и В на ось l (рис. 1).

Согласно определению имеем

Определение 3. если и базис оси l декартов, то есть, то проекция вектора на ось l называется ортогональной (рис. 2).

В пространстве определение 2 проекции вектора на ось остается в силе, только направление проектирования задается двумя неколлинеарными векторами (рис. 3).

Из определения проекции вектора на ось вытекает, что каждая координата вектора есть проекция этого вектора на ось, определяемую соответствующим базисным вектором. При этом направление проектирования задается двумя другими базисными векторами, если проектирование ведется (рассматривается) в пространстве, или другим базисным вектором, если проектирование рассматривается на плоскости (рис. 4).

Теорема 1. Ортогональная проекция вектора на ось l равна произведению модуля вектора на косинус угла между положительным направлением оси l и, т. е.


С другой стороны

Из находим

Подставив АС в равенство (2), получим

Так как числа x и одного знака в обоих рассматриваемых случаях ((рис. 5, а) ; (рис. 5, б) , то из равенства (4) следует

Замечание. В дальнейшем мы будем рассматривать только ортогональную проекцию вектора на ось и поэтому слово «орт» (ортогональная) в обозначении будем опускать.

Приведем ряд формул, которые используются в дальнейшем при решении задач.

а)Проекция вектора на ось.

Если, то ортогональная проекция на вектор согласно формуле (5) имеет вид

в) Расстояние от точки до плоскости.

Пусть б - данная плоскость с нормальным вектором, M - данная точка,

d - расстояние от точки М до плоскости б (рис. 6).

Если N- произвольная точка плоскости б, а и - проекции точек Mи Nна ось, то

  • г) Расстояние между скрещивающимися прямыми.

Пусть а и b- данные скрещивающиеся прямые, - перпендикулярный им вектор, А и В - произвольные точки прямых а и b соответственно (рис. 7), и - проекции точек Aи Bна, тогда

д) Расстояние от точки до прямой.

Пусть l - данная прямая с направляющим вектором, M - данная точка,

N - ее проекция на прямую l , тогда - искомое расстояние (рис. 8).

Если А - произвольная точка прямой l , то в прямоугольном треугольнике MNAгипотенуза MAи катет могут быть найдены. Значит,


е) Угол между прямой и плоскостью.

Пусть - направляющий вектор данной прямой l , - нормальный вектор данной плоскости б, - проекция прямой l на плоскость б (рис. 9).

Как известно, угол ц между прямой l и ее проекцией на плоскость б называется углом между прямой и плоскостью. Имеем

Приведем примеры решения метрических задач векторно-координатным методом.

Вначале вспомним, что такое координатная ось , проекция точки на ось и координаты точки на оси .

Координатная ось - это прямая, которой придается какое-то направление. Можете считать, что это вектор с бесконечно большим модулем.

Координатная ось обозначается какой-либо буквой: X , Y , Z , s , t … Обычно на оси выбирается (произвольно) точка, которая называется началом отсчета и, как правило, обозначается буквой О. От этой точки отсчитываются расстояния до других интересующих нас точек.

Проекция точки на ось - это основание перпендикуляра, опущенного из этой точки на данную ось (рис. 8). То есть, проекцией точки на ось является точка.

Координата точки на ось - это число, абсолютная величина которого равна длине отрезка оси (в выбранном масштабе), заключённого между началом оси и проекцией точки на эту ось. Это число берется со знаком плюс, если проекция точки располагается в направлении оси от ее начала и со знаком минус, если в противоположном направлении.

Скалярная проекция вектора на ось - это число , абсолютная величина которого равна длине отрезка оси (в выбранном масштабе), заключённого между проекциями точки начала и точки конца вектора. Важно! Обычно вместо выражения скалярная проекция вектора на ось говорят просто - проекция вектора на ось , то есть слово скалярная опускают. Проекция вектора обозначается той же буквой, что и проектируемый вектор (в обычном, нежирном написании), с нижним (как правило) индексом названия оси, на которую этот вектор проектируется. Например, если на ось Х проектируется вектор а, то его проекция обозначается а x . При проектировании этого же вектора на другую ось, скажем, ось Y , его проекция будет обозначаться а y (рис. 9).

Чтобы вычислить проекцию вектора на ось (например, ось X) надо из координаты точки его конца вычесть координату точки начала, то есть

а x = х к − x н.

Надо помнить: скалярная проекция вектора на ось (или, просто, проекция вектора на ось) - это число (не вектор)! Причем, проекция может быть положительной, если величина х к больше величины х н, отрицательной, если величина х к меньше величины х н и равной нулю, если х к равно х н (рис. 10).

Проекцию вектора на ось можно также найти, зная модуль вектора и угол, который он составляет с этой осью.

Из рисунка 11 видно, что а x = а Cos α

То есть, проекция вектора на ось равна произведению модуля вектора на косинус угла между направлением оси и направлением вектора . Если угол острый, то Cos α > 0 и а x > 0, а, если тупой, то косинус тупого угла отрицателен, и проекция вектора на ось тоже будет отрицательна.

Углы, отсчитываемые от оси против хода часовой стрелки, принято считать положительными, а по ходу - отрицательными. Однако, поскольку косинус - функция четная, то есть, Cos α = Cos (− α), то при вычислении проекций углы можно отсчитывать как по ходу часовой стрелки, так и против.

При решении задач часто будут использоваться следующие свойства проекций: если

а = b + c +…+ d , то а x = b x + c x +…+ d x (аналогично на другие оси),

a = mb , то а x = mb x (аналогично на другие оси).

Формула а x = а Cos α будет очень часто встречаться при решении задач, поэтому ее обязательно надо знать. Правило определения проекции надо знать наизусть!

Запомните!

Чтобы найти проекцию вектора на ось надо модуль этого вектора умножить на косинус угла между направлением оси и направлением вектора.

Еще раз - НАИЗУСТЬ!



Последние материалы раздела:

Чем атом отличается от молекулы Сравнение атома и молекулы
Чем атом отличается от молекулы Сравнение атома и молекулы

Еще много веков назад люди догадывались, что любое вещество на земле состоит из микроскопических частиц. Прошло какое-то время, и ученые доказали,...

Что такое молекула и чем она отличается от атома Что такое изотопы
Что такое молекула и чем она отличается от атома Что такое изотопы

Еще много веков назад люди догадывались, что любое вещество на земле состоит из микроскопических частиц. Прошло какое-то время, и ученые доказали,...

Чем отличаются изотопы одного элемента друг от друга Чем атом отличается от молекулы
Чем отличаются изотопы одного элемента друг от друга Чем атом отличается от молекулы

Вся материя вокруг нас, которую мы видим, состоит из различных атомов. Атомы отличаются друг от друга строением, размером и массой. Существует...