Деформация базальные ядра головного мозга. Последствия патологий базальных ганглий

В статье поговорим о базальных ганглиях. Что это такое и какую роль эта структура играет в здоровье человека? Все вопросы будут подробно рассмотрены в статье, после чего вы поймёте важность абсолютно каждой «детали» в вашем теле и голове.

О чем идет речь?

Все мы прекрасно знаем, что мозг человека является очень сложной уникальной структурой, в которой абсолютно все элементы неразрывно и прочно связаны при помощи миллионов нейронных связей. В мозгу есть серое и Первое является обычным скоплением множества нервных клеток, а второе отвечает за скорость передачи импульсов между нейронами. Кроме коры, естественно, есть и другие структуры. Они представляют собой ядра или базальные ганглии, состоящие из серого вещества и находящиеся в белом. Во многом именно они отвечают за нормальную работу нервной системы.

Базальные ганглии: физиология

Расположены эти ядра возле полушарий головного мозга. Они имеют очень много отростков большой длины, которые называются аксонами. Благодаря им информация, то есть нервные импульсы, передается к разным структурам мозга.

Строение

Строение базальных ганглий разнообразное. В основном по этой классификации их делят на те, которые относятся к экстрапирамидной и лимбической системе. Обе эти системы имеют огромное влияние на работу головного мозга, находятся с ним в тесном взаимодействии. Они оказывают воздействие на таламус, теменные и лобные доли. Экстрапирамидная сеть состоит из базальных ганглий. Ей полностью пронизаны подкорковые части мозга, и она оказывает важнейшее влияние на работу всех функций организма человека. Эти скромные образования очень часто остаются недооценёнными, а ведь их работа ещё полностью не изучена.

Функции

Функций базальных ганглий не так много, но они существенны. Как мы уже знаем, они сильно связаны со всеми остальными структурами мозга. Собственно, из понимания этого утверждения и вытекают основные :

  1. Контроль за осуществлением процессов по интеграции в высшей нервной деятельности.
  2. Влияние на работу вегетативной нервной системы.
  3. Регулирование двигательных процессов человека.

В чём участвуют?

Есть ряд процессов, в которых ядра принимают непосредственное участие. Базальные ганглии, строение, развитие и функции которых мы рассматриваем, участвуют в таких действиях:

  • влияют на ловкость человека при использовании ножниц;
  • точность забивания гвоздей;
  • скорость реакции, ведение мяча, точность попадания в корзину и ловкость отбивания мяча при игре в баскетбол, футбол, волейбол;
  • владение голосом во время пения;
  • координация действий во время копания земли.

Также эти ядра влияют на сложные двигательные процессы, например на мелкую моторику. Это выражается в том, как двигается рука во время письма или рисования. Если работа этих структур головного мозга нарушена, то почерк будет неразборчивым, грубым, «неуверенным». Другими словами, будет казаться, что человек только недавно взял в руки ручку.

Новые исследования доказали, что базальные ганглии также могут влиять на тип движения:

  • поддающиеся контролю или внезапные;
  • повторяемые много раз или новые, совершенно неизвестные;
  • простые односложные или последовательные и даже одновременные.

Многие исследователи небезосновательно считают, что функции базальных ганглий заключаются в том, что человек может действовать автоматически. Это говорит о том, что многие действия, которые человек выполняет на ходу, не обращая на них особого внимания, возможны именно благодаря ядрам. Физиология базальных ганглий такова, что они контролируют и регулируют автоматическую деятельность человека, не забирая при этом ресурсы у центральной нервной системы. То есть мы должны понимать, что именно эти структуры во многом контролируют то, как человек действует при стрессе или в непонятной опасной ситуации.

В обычной жизни базальные ядра просто передают импульсы, которые поступают от лобных долей, к другим структурам мозга. Целью является целенаправленное выполнение известных действий без нагрузки на ЦНС. Однако в опасных ситуациях ганглии «переключаются» и позволяют человеку автоматически принять наиболее оптимальное решение.

Патологии

Поражения базальных ганглиев могут быть очень разными. Рассмотрим некоторые из них. Это дегенеративные поражения мозга человека (например, болезнь Паркинсона или хорея Гентингтона). Это могут быть наследственные генетические болезни, которые связаны с нарушением обмена веществ. Патологии, характеризующиеся сбоями в работе ферментных систем. Заболевания щитовидной железы тоже могут происходить из-за нарушений в работе ядер. Возможные патологии, возникающие вследствие отравления марганцем. Влиять на работу базальных ядер могут опухоли мозга, и, пожалуй, это самая неприятная ситуация.

Формы патологий

Исследователи условно выделяют две основных формы патологии, которые могут возникать у человека:

  1. Функциональные проблемы. Такое часто встречается у детей. Причиной в большинстве случаев является генетика. Могут возникать у взрослых людей после инсульта, сильной травмы или кровоизлияния. Кстати, в пожилом возрасте именно нарушения работы экстрапирамидной системы человека вызывают болезнь Паркинсона.
  2. Опухоли и кисты. Такая патология очень опасна, она требует немедленного врачебного вмешательства. Характерным симптомом является наличие серьезных и затяжных неврологических болезней.

Также стоит отметить, что базальные ганглии головного мозга могут влиять на гибкость поведения человека. Это означает, что человек начинает теряться в различных ситуациях, не может быстро среагировать, приспособиться к трудностям или просто действовать по своему привычному алгоритму. Также сложно дается понимание того, как надо по логике вещей поступить в простой для нормального человека ситуации.

Поражение базальных ганглиев опасно тем, что человек становится практически необучаем. Это логично, ведь обучение похоже на автоматизированную задачу, а за такие задачи, как мы знаем, отвечают именно эти ядра. Однако это поддаётся лечению, хоть и очень медленному. При этом результаты будут незначительны. На фоне этого человек перестает управлять своей координацией движений. Со стороны кажется, что он двигается резко и порывисто, как будто дергается. При этом действительно может возникать тремор конечностей или какие-то непроизвольные действия, над которыми больной не властен.

Коррекция

Терапия расстройства полностью зависит от того, чем оно было вызвано. Лечением занимается врач-невропатолог. Очень часто решить проблему можно только при помощи постоянного приема препаратов. Самостоятельно восстанавливаться эти системы не способны, а народные методы эффективными бывают крайне редко. Главное, что требуется от человека - это своевременное обращение к врачу, так как только это позволит улучшить ситуацию и даже избежать очень неприятных симптомов. Врач проводит диагностику, наблюдая за пациентом. Также используются современные методы диагностики, как МРТ и КТ мозга.

Подводя итоги статьи, хочется сказать о том, что для нормальной работы человеческого организма, и в частности мозга, очень важно правильное функционирование всех его структур и даже тех, которые на первый взгляд могут показаться совершенно незначительными.

Функции базальных ядер

Основные структуры базальных ядер (рис. 66). Базальные ядра - это хвостатое ядро (nucleus caudatus ), скорлупа (putamen ) и бледный шар (globulus pallidus ); некоторые авторы относят к базальным ядрам ограду (claustrum ). Все эти четыре ядра называют полосатым телом (corpus striatum ). Выделяют также стриатум (striatum ) - это хвостатое ядро и скорлупа. Бледный шар и скорлупа образуют чечевицеобразное ядро (nukleus lentioris ). Стриатум и бледный шар образуют стриопаллидарную систему.

Рис. 66. А - Расположение базальных ганглиев в объеме головного мозга. Базальные ганглии закрашены в красный цвет, таламус – серый цвет, а остальная часть мозга не закрашена. 1 – Бледный шар, 2 – Таламус, 3 – Скорлупа, 4 – Хвостатое ядро, 5 – Миндалевидное тело (Астапова, 2004). Б – Трехмерное изображение расположения базальных ганглиев в объеме головного мозга (Гайтон, 2008)

Функциональные связи базальных ядер. У базальных ядер нет входа от спинного мозга, но есть прямой вход от коры больших полушарий .

Базальные ядра участвуют в выполнении двигательных функций, эмоциональных и познавательных (когнитивных) функций .

Возбуждающие пути идут, в основном, к стриатуму: от всех областей коры большого мозга (прямо и через таламус), от неспецифических ядер таламуса, от черного вещества (средний мозг)) (рис. 67).

Рис. 67. Связь контура базальных ганглиев с кортикоспиномозжечковой системой для регуляции двигательной активности (Гайтон, 2008)

Сам стриатум оказывает в основном тормозное и, частично, возбуждающее влияние на бледный шар. От бледного шара идет самый важный путь в двигательные вентральные ядра таламуса, от них возбуждающий путь идет в двигательную кору большого мозга. Часть волокон от стриатума идет в мозжечок и к центрам ствола мозга (РФ, красное ядро и далее - в спинной мозг.

Тормозящие пути от стриатума идут к черному веществу и после переключения - к ядрам таламуса (рис. 68).

Рис. 68. Нервные пути, секретирующие различные типы нейромедиаторов в базальных ганглиях. Ах – ацетилхолин; ГАМК – гамма-аминомасляная кислота (Гайтон, 2008)

Двигательные функции базальных ядер. В целом базальные ядра, имея двусторонние связи с корой большого мозга, таламусом, ядрами ствола мозга, участвуют в создании программ целенаправленных движений с учетом доминирующей мотивации. При этом нейроны стриатума оказывают тормозное влияние (медиатор - ГАМК) на нейроны черного вещества. В свою очередь, нейроны черного вещества (медиатор - дофамин) оказывают модулирующее влияние (тормозное и возбуждающее) на фоновую активность нейронов стриатума. При нарушении дофаминергических влияний на базальные ядра наблюдаются двигательные расстройства типа паркинсонизма, при которых резко падает концентрация дофамина в обоих ядрах стриатума. Наиболее важные функции базальных ядер выполняют стриатум и бледный шар.

Функции стриатума . Участвует в осуществлении поворота головы и туловища и ходьбы по кругу , которые входят в структуру ориентировочного поведения. Поражение хвостатого ядра при заболеваниях и при разрушении в эксперименте ведет к насильственным, избыточным движениям (гиперкинезы: хорея и атетоз).

Функции бледного шара . Оказывает модулирующее влияние на двигательную кору, мозжечок, РФ, красное ядро. При стимуляции бледного шара у животных преобладают элементарные двигательные реакции в виде сокращения мышц конечностей, шеи и лица, активация пищевого поведения. Разрушение бледного шара сопровождается снижением двигательной активности - возникает адинамия (бледность двигательных реакций), а также ему (разрушению) сопутствует развитие сонливости, «эмоциональной тупости», что затрудняет осуществление имеющихся условных рефлексов и ухудшает выработку новых (ухудшает кратковременную память).

Базальные ядра, названные гистологами прошлого века ганглиями, представляют собой структуры ядерного типа, которые располагаются в толще белого вещества переднего мозга ближе к его основанию. У млекопитающих к базальным ядрам относятся сильно вытянутое в длину и изогнутое хвостатое ядро и заложенное в толще белого вещества чечевицеобразное ядро. Двумя белыми пластинками оно подразделяется на три части: наиболее крупную, лежащую латерально скорлупу, и бледный шар, состоящий из внутреннего и внешнего отделов (рис. 3.29).

Эти анатомические образования формируют так называемую стриопаллидарную систему (От лат. striatus - полосатый и pallidus - бледный.), которая по филогенетическим и функциональным критериям разделяется на древнюю часть палеостриатум и новую - неостриатум. Палеостриатум представлен бледным шаром, а неостриатум, появляющийся впервые у рептилий, состоит из хвостатого ядра и скорлупы, которые объединяются под названием полосатого тела, или стриатума. Хвостатое ядро и скорлупа связаны анатомически и характеризуются чередованием белого и серого вещества, что оправдывает возникновение термина полосатое тело.

К стриопаллидарной системе часто относят также субталамическое ядро (люисово тело) и черное вещество среднего мозга, которые образуют с базальными ядрами функциональное единство. Полосатое тело состоит главным образом из мелких клеток, аксоны которых направляются к бледному шару и черному веществу среднего мозга.

Полосатое тело является своеобразным коллектором афферентных входов, идущих к базальным ядрам. Главными источниками этих входов служат новая кора (преимущественно сенсомоторная), неспецифические ядра таламуса и дофаминергические пути от черного вещества.

В противоположность полосатому телу бледный шар состоит из крупных нейронов и является сосредоточением выходных, эфферентных путей стриопаллидарной системы. Аксоны локализованных в бледном шаре нейронов подходят к различным ядрам промежуточного и среднего мозга, в том числе и к красному ядру, где начинается красноядерно-спинномозговой путь экстрапирамидной системы двигательной регуляции.

Другой важный эфферентный путь идет от внутреннего отдела бледного шара к передневентральному и вентролатеральному ядрам таламуса, а оттуда продолжается к двигательным областям коры головного мозга. Наличие этого пути обусловливает многозвенную петлеобразную связь между сенсомоторными и двигательными областями коры, которая осуществляется через полосатое тело и бледный шар к таламусу. Примечательно, что в составе этого стриопаллидоталамокортикального пути базальные ядра выполняют роль афферентного звена по отношению к моторным областям коры головного мозга. Многочисленные связи стриопаллидарной системы с различными отделами мозга свидетельствуют об ее участии в процессах интеграции, однако до настоящего времени в знании о функциях базальных ядер остается много невыясненного.

Базальные ядра играют важную роль в регуляции движений и сенсомоторной координации. Известно, что при повреждении полосатого тела наблюдается атетоз - медленные червеобразные движения кистей и пальцев рук.

Дегенерация клеток этой структуры вызывает также другое заболевание - хорею, выражающуюся в судорожных подергиваниях мимических мышц и мускулатуры конечностей, которые наблюдаются в покое и при выполнении произвольных движений. Однако попытки выяснить этиологию этих явлений в экспериментах на животных не дали результатов. Разрушение хвостатого ядра у собак и кошек не приводило к возникновению гиперкинезов, характерных для описанных выше заболеваний.

Локальное электрическое раздражение некоторых участков полосатого тела вызывает у животных так называемые циркуляторные двигательные реакции, характеризующиеся поворотом головы и туловища в сторону, противоположную раздражению. Стимуляция других участков полосатого тела, напротив, приводит к торможению двигательных реакций, вызванных различными сенсорными раздражениями.

Наличие определенных расхождений между данными эксперимента и клиники, по-видимому, свидетельствует о возникновении системных нарушений механизмов регуляции движений при патологических процессах в базальных ядрах. Очевидно, эти нарушения связаны с изменениями функции не только полосатого тела, но и других структур.

В качестве примера можно рассмотреть возможный патофизиологический механизм возникновения паркинсонизма. Этот синдром связан с повреждением базальных ядер и характеризуется комплексом таких симптомов, как гипокинезия - малая подвижность и затруднения при переходе от покоя к движению; восковидная ригидность, или гипертонус, независящий от положения суставов и фазы движения; статический тремор (дрожание), наиболее выраженный в дистальных отделах конечностей.

Все эти симптомы обусловлены гиперактивностью базальных ядер, которая возникает при повреждении дофаминергического (по всей вероятности, тормозного) пути, который идет от черного вещества к полосатому телу. Таким образом, этиология паркинсонизма обусловлена дисфункцией полосатого тела и структур среднего мозга, которые функционально объединены в стриопаллидарную систему.

Для выяснения роли базальных ядер в осуществлении движений успешно используют данные микроэлектродных исследований. Эксперименты на обезьянах показали наличие корреляции между разрядами нейронов полосатого тела и медленными, направленными из стороны в сторону червеобразными движениями лапы. Как правило, разряд нейрона предшествует началу медленного движения, а при быстрых «баллистических» движениях он отсутствует. Эти факты позволяют заключить, что нейроны полосатого тела участвуют в генерации медленных движений, подвергающихся коррекции со стороны сенсорной обратной связи. Базальные ядра представляют собой один из уровней построенной по иерархическому принципу системы регуляции движений.

Получая информацию от ассоциативных зон коры, базальные ядра участвуют в создании программы целенаправленных движений с учетом доминирующей мотивации. Далее соответствующая информация от базальных ядер поступает в передний таламус, где она интегрируется с информацией, приходящей от мозжечка. Из таламических ядер импульсация достигает двигательной коры, которая отвечает за реализацию программы целенаправленного движения через посредство нижележащих стволовых и спинальных двигательных центров. Так в общих чертах можно представить место базальных ядер в целостной системе двигательных центров мозга.

Дата публикования: 2014-12-30; Прочитано: 124 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Чечевицеобразное ядро (nucl.

Базальные ядра и их функции

lentiformis) находится латерально и кпереди от таламуса. Оно имеет клиновидную форму с вершиной, обращенной к средней линии. Между задней гранью чечевицеобразного ядра и таламусом располагается задняя ножка внутренней капсулы (crus posterius capsulae internae). Передняя грань чечевицеобразного ядра внизу и спереди сращена с головкой хвостатого ядра.

Две полоски белого вещества разделяют чечевицеобразное ядро на три членика: латеральный членик – скорлупа (putamen), имеющая темную окраску, располагается с наружной стороны, а две древние части бледного шара (globus pallidus) конической формы обращены к середине.

Хвостатое ядро

Хвостатое ядро (nucl. caudatus)имеет булавовидную форму и изогнуто назад.

Передняя его часть расширена, называется головкой (caput) и располагается выше чечевицеобразного ядра, а его задняя часть — хвост (cauda) проходит сверху и латеральнее таламуса, отделяясь от него мозговыми полосками (stria medullaris). Головка хвостатого ядра участвует в образовании латеральной стенки переднего рога бокового желудочка (cornu anterius ventriculi lateralis). Хвостатое ядро состоит из малых и больших пирамидных клеток. Между чечевицеобразным и хвостатыми ядрами располагается внутренняя капсула (capsula interna).

Внутренняя капсула (capsula interna) располагается между таламусом, чечевицеобразным и хвостатым ядрами и является прослойкой белого вещества, образованной проекционными волокнами на пути к коре и от коры к нижележащим отделам ЦНС.

На горизонтальном разрезе полушария головного мозга на уровне середины таламуса внутренняя капсула имеет белую окраску и напоминает форму угла, открытого кнаружи. Внутренняя капсула разделяется на три отдела: переднюю ножку (crus anterius capsulae internae), колено (genu capsulae internae) и заднюю ножку (crus posterius capsulae internae).

Выше внутренней капсулы волокна образуют лучистый венец (corona radiata). Короткая передняя ножка капсулы образована аксонами, которые исходят из клеток коры лобной доли, и направляются в таламус (tr.

frontothalamicus), в красное ядро (tr. frontorubralis), к клеткам ядер моста (tr. frontopontinus). В колене внутренней капсулы располагается корково-ядерный путь (tr. corticonuclearis), соединяющий клетки двигательной коры с ядрами двигательных черепных нервов (III, IV, V, VII, IX, X, XI, XII). Задняя ножка внутренней капсулы несколько длиннее, чем передняя, граничит с таламусом и чечевицеобразным ядром. В передней ее части располагаются волокна, исходящие от клеток задних отделов лобной (двигательной) коры и направляющиеся к ядрам передних столбов спинного мозга.

Несколько кзади от кортико-спинального пути располагаются волокна, направляющиеся от латеральных ядер таламуса к задней центральной извилине, а также от клеток коры к ядрам таламуса. В задней ножке располагаются волокна, проходящие от коры затылочной и височной долей к ядрам моста. В заднем отделе проходят слуховые и зрительные волокна, начинающиеся от внутреннего и наружного коленчатого тел и оканчивающиеся в височной и затылочной долях.

На всем протяжении внутренней капсулы проходят поперечные волокна, которые соединяют чечевицеобразное тело с хвостатым ядром и таламусом. Веерообразно расходящиеся волокна всех проводящих путей, образующих внутреннюю капсулу, в пространстве между ней и корой полушария мозга формируют лучистый венец. Незначительные повреждения небольших участков внутренней капсулы вследствие компактности расположения волокон обусловливают тяжелые расстройства двигательных функций и потерю общей чувствительности, слуха и зрения на стороне противоположной травме.

Полосатое тело

Полосатое тело получает афферентные импульсы главным образом от таламуса, отчасти от коры; посылает эфферентные импульсы к бледному шару.

Полосатое тело рассматривают как эффекторное ядро, не имеющее самостоятельных двигательных функций, но контролирующее функции филогенетически более старого двигательного центра — паллидум а (бледного шара).

Полосатое тело регулирует и частично затормаживает безусловнорефлекторную деятельность бледного шара, т.

е. действует на него так же, как бледный шар действует на красное ядро. Полосатое тело считают высшим подкорковым регуляторно-координационным центром двигательного аппарата.

В полосатом теле, согласно экспериментальным данным, находятся также высшие вегетативные координационные центры, регулирующие обмен веществ, теплообразование и тепловыведение, сосудистые реакции.

По-видимому, в полосатом теле находятся центры, которые интегрируют, объединяют безусловнорефлекторные двигательные и вегетативные реакции в единый целостный акт поведения.

Полосатое тело оказывает влияние на органы, иннервируемые вегетативной нервной системой, через посредство своих связей с гипоталамусом. При поражениях полосатого тела у человека наблюдается атетоз — стереотипические движения конечностей, а также хорея — сильные неправильные движения, совершающиеся без всякого порядка и последовательности и захватывающие почти всю мускулатуру (“пляска святого Витта”).

И атетоз, и хорея рассматриваются как результат выпадения тормозящего влияния, которое оказывает полосатое тело на бледное ядро.

Бледный шар

Бледный шар (globus pallidus), бледное ядро, — парное образование, входящее в состав чечевицеобразного ядра, которое находится в больших полушариях и отделяется внутренней капсулой. Паллидум является двигательным ядром. При его раздражении можно получить сокращение шейных мышц, конечностей и всего туловища, преимущественно на противоположной стороне.

Бледное ядро получает импульсы по афферентным волокнам, идущим от таламуса и замыкающим таламо-паллидарную рефлекторную дугу. Бледное ядро, будучи связано эффекторно с центрами среднего и заднего мозга, регулирует и координирует их работу.

Одной из функций бледного ядра считают торможение ниже лежащих ядер, главным образом красного ядра среднего мозга, в связи с чем при повреждении бледного шара наблюдается сильное увеличение тонуса скелетной мускулатуры — гипертонус, т.

к. красное ядро освобождается от тормозящего влияния бледного шара. Таламо-гипоталамо-паллидарная система принимает участие у высших животных и человека в осуществлении сложных безусловных рефлексов — оборонительных, ориентировочных, пищевых, половых.

У человека при стимуляции бледного шара получен феномен увеличения объема кратковременной памяти почти в два раза.

Исследуя пространственно-временные соотношения между элементами речи (гласные фонемы) и регистрируемой импульсной активностью выявлена корреляция, свидетельствующая о вовлечении той или иной структуры в процесс слуховой памяти. Такие соотношения в ряде случаев удалось получить при исследовании бледного шара, дорсомедиального таламического ядра.

Миндалевидное ядро

Миндалевидное ядро (corpus amygdaloideum), или амигдалоидный комплекс представляет группу ядер и локализуется внутри переднего полюса височной доли, латеральнее перегородки продырявленного вещества.

Амигдалоидный комплекс представляет собой структуру, входящую в лимбическую систему мозга, которая характеризуется очень низким порогом возбуждения, что может способствовать развитию эпилептиформной активности.

В комплексе имеются как более крупные (пирамидные, грушевидные) и средние по размерам (мультиполярные, биполярные, канделяброобразные), так и мелкие клетки.

В амигдалоидном комплексе выделяют филогенетически более старую — кортикомедиальную — и более новую базальнолатеральную части. Группа кортикомедиальных ядер отличается низкой активностью ацетилхолинэстеразы (АХЭ) и в большей мере связана с обонятельной функцией, образуя проекции в палеокортекс. Связь с половой функцией подтверждается тем, что стимуляция этих ядер облегчает секрецию люлиберина и фоллиберина.

Нейроны базальнолатеральных ядер отличаются более высокой активностью АХЭ, дают проекцию в новую кору и полосатое тело, а также облегчают секрецию АКТГ и гормона роста. При стимуляции амигдалоидного комплекса возникают судороги, эмоционально окрашенные реакции, страх, агрессия и т. д.

Ограда

Ограда (claustrum) – тонкая прослойка серого вещества, отделенная наружной капсулой белого вещества от чечевицеобразного ядра. Ограда внизу соприкасается с ядрами переднего продырявленного вещества (substantia perforata anterior).

Предполагают участие в осуществлении глазодвигательных реакций слежения за объектом.

Предыдущая11121314151617181920212223242526Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Функции базальных ядер

рис. 66). nucleus caudatus ), скорлупа (putamen ) и бледный шар (globulus pallidus claustrum ). Все эти четыре ядра называют полосатым телом (corpus striatum ).

Выделяют также стриатум (striatum nukleus lentioris

66. А — Расположение базальных ганглиев в объеме головного мозга. Базальные ганглии закрашены в красный цвет, таламус – серый цвет, а остальная часть мозга не закрашена. 1 – Бледный шар, 2 – Таламус, 3 – Скорлупа, 4 – Хвостатое ядро, 5 – Миндалевидное тело (Астапова, 2004).

У базальных ядер .

.

Возбуждающие пути

Тормозящие пути от стриатума идут к черному веществу и после переключения - к ядрам таламуса (рис.

Рис. 68. Нервные пути, секретирующие различные типы нейромедиаторов в базальных ганглиях. Ах – ацетилхолин; ГАМК – гамма-аминомасляная кислота (Гайтон, 2008)

В целом базальные ядра, имея двусторонние связи с корой большого мозга, таламусом, ядрами ствола мозга, участвуют в создании программ целенаправленных движений с учетом доминирующей мотивации. При этом нейроны стриатума оказывают тормозное влияние (медиатор - ГАМК) на нейроны черного вещества. В свою очередь, нейроны черного вещества (медиатор - дофамин) оказывают модулирующее влияние (тормозное и возбуждающее) на фоновую активность нейронов стриатума.

Функции стриатума .

Поражение

Функции бледного шара .

Ядра головного мозга и их функции

Разрушение бледного шара адинамия затрудняет осуществление имеющихся условных рефлексов и ухудшает выработку новых

Предыдущая19202122232425262728293031323334Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Функции базальных ядер

Базальными ядрами называются массивные подкорковые ядра конечного мозга. Они располагаются в глубине белого вещества полушарий. К ним относятся

  • хвостатое ядро (состоит из головки, тела и хвоста),

· чечевицеобразное ядро (состоит из скорлупы и бледного шара – globus pallidus – парное образование),

· ограда,

· миндалевидное тело.

Эти ядра отделены друг от друга прослойками белого вещества, образующими внутреннюю, наружную и крайнюю капсулы.

Хвостатое и чечевицеобразное ядра вместе составляют анатомическое образование — полосатое тело (corpus striatum).

Хвостатое ядро и скорлупа

Хвостатое ядро и скорлупа имеют сходное гистологическое строение.

Их нейроны относятся ко II типу клеток Гольджи, т. е. имеют короткие дендриты, тонкий аксон; их размер до 20 мк. Этих нейронов в 20 раз больше, чем нейронов Гольджи I типа, имеющих разветвленную сеть дендритов и размер около 50 мк.

Функции любых образований головного мозга определяются прежде всего их связями, которых у базальных ядер достаточно много.

Базальные ядра

Эти связи имеют четкую направленность и функциональную очерченность.

Хвостатое ядро и скорлупа получают нисходящие связи преимущественно от экстрапирамидной коры через подмозолистый пучок. Другие поля коры большого мозга также посылают большое количество аксонов к хвостатому ядру и скорлупе.

Основная часть аксонов хвостатого ядра и скорлупы идет к бледному шару, отсюда - к таламусу и только от него - к сенсорным полям.

Следовательно, между этими образованиями имеется замкнутый круг связей. Хвостатое ядро и скорлупа имеют также функциональные связи со структурами, лежащими вне этого круга: с черной субстанцией, красным ядром, люисовым телом, ядрами преддверия, мозжечком, γ-клетками спинного мозга.

Обилие и характер связей хвостатого ядра и скорлупы свидетельствуют об их участии в интегративных процессах, организации и регуляции движений, регуляции работы вегетативных органов.

Раздражение поля 8 коры большого мозга вызывает возбуждение нейронов хвостатого ядра, а поля 6 - возбуждение нейронов хвостатого ядра и скорлупы.

Одиночное раздражение сенсомоторной области коры большого мозга может вызывать возбуждение или торможение активности нейронов хвостатого ядра. Эти реакции возникают через 10-20 мс, что свидетельствует о прямых и опосредованных связях коры большого мозга с хвостатым ядром.

Медиальные ядра таламуса имеют прямые связи с хвостатым ядром, свидетельством чего служит реакция его нейронов, наступающая через 2-4 мс после раздражения таламуса.

Реакцию нейронов хвостатого ядра вызывают раздражения кожи, световые, звуковые стимулы.

Во взаимодействиях хвостатого ядра и бледного шара превалируют тормозные влияния.

Если раздражать хвостатое ядро, то большая часть нейронов бледного шара тормозится, а меньшая возбуждается. В случае повреждения хвостатого ядра у животного появляется двигательная гиперактивность.

Взаимодействие черного вещества и хвостатого ядра основано на прямых и обратных связях между ними. Установлено, что стимуляция хвостатого ядра усиливает активность нейронов черного вещества. Стимуляция черного вещества приводит к увеличению, а разрушение - к уменьшению количества дофамина в хвостатом ядре.

Установлено, что дофамин синтезируется в клетках черного вещества, а затем со скоростью 0,8 мм/ч транспортируется к синапсам нейронов хвостатого ядра. В хвостатом ядре в 1 г нервной ткани накапливается до 10 мкг дофамина, что в 6 раз больше, чем в других отделах переднего мозга, бледном шаре, в 19 раз больше, чем в мозжечке. Благодаря дофамину проявляется растормаживающий механизм взаимодействия хвостатого ядра и бледного шара.

Хвостатое ядро и бледный шар принимают участие в таких интегративных процессах, как условнорефлекторная деятельность, двигательная активность.

Это выявляется при стимуляции хвостатого ядра, скорлупы и бледного шара, деструкции и при регистрации электрической активности.

Раздражение хвостатого ядра может полностью предотвратить восприятие болевых, зрительных, слуховых и других видов стимуляции. Раздражение вентральной области хвостатого ядра снижает, а дорсальной - повышает слюноотделение.

При стимуляции хвостатого ядра удлиняются латентные периоды рефлексов, нарушается переделка условных рефлексов.

Выработка условных рефлексов на фоне стимуляции хвостатого ядра становится невозможной. Видимо, это объясняется тем, что стимуляция хвостатого ядра вызывает торможение активности коры большого мозга.

В то же время при раздражении хвостатого ядра могут появляться некоторые виды изолированных движений.

Видимо, хвостатое ядро имеет наряду с тормозящими и возбуждающие структуры.

С позиции функциональной анатомии хвостатое и чечевицеобразное ядра объединяют понятием стриопаллидарная система . Стриарная система включает в себя хвостатое ядро и скорлупу, а паллидарная – бледный шар.

Стриатум рассматривают как основное рецептивное поле стриопаллидарной системы. Здесь заканчиваются волокна из 4-х основных источников

· коры полушарий,

· зрительного бугра,

· черной субстанции,

· миндалевидного тела.

Корковые нейроны оказывают на нейроны стриатума возбуждающее действие.

Нейроны черной субстанции оказывают на них тормозящее действие.

Аксоны нейронов стриарной системы заканчиваются на нейронах паллидум, и оказывают на них тормозящее действие.

Паллидум является выходной структурой стриопаллидарной системы.

К нему сходится основная масса эфферентных волокон.

Нейроны бледного шара оказывают на двигательные нейроны спинного мозга возбуждающее действие.

Стриопаллидарная система является центром экстрапирамидной системы. Ее основная функция – регуляция произвольных двигательных реакций. При ее участии создаются:

· оптимальная для намеченного действия поза;

· оптимальное соотношение тонуса между мышцами антагонистами и синергистами;

· плавность и соразмерность движений во времени и пространстве.

При поражении стриопаллидарной системы развивается дискинезия – нарушение двигательных актов.

Гипокинезия – бледность невыразительность движений. Усиление тормозного влияния стриарной системы на паллидарную.

Гиперкинезия (хорея) – сильные неправильные движения, совершающиеся без всякого порядка и последовательности, которые захватывают всю мускулатуру — «пляска святого Витта». Причина: выпадение тормозного влияния стриарной системы на паллидарную систему.

Ограда и миндалевидное тело входит в состав лимбической системы.

Базальные ядра обеспечивают регуляцию двигательных и вегетативных функций, участвуют в осуществлении интегративных процессов высшей нервной деятельности.

Нарушения в базальных ядрах приводит к моторным дисфункциям, таким как, замедленность движения, изменения мышечного тонуса, непроизвольные движения, тремор.

Эти нарушения фиксируются при болезни Паркинсона и болезни Хантингтона.

Бледный шар

Бледный шар (globus pallidus s. pallidum) имеет преимущественно крупные нейроны Гольджи I типа. Связи бледного шара с таламусом, скорлупой, хвостатым ядром, средним мозгом, гипоталамусом, соматосенсорной системой и др. свидетельствуют об его участии в организации простых и сложных форм поведения.

Раздражение бледного шара с помощью вживленных электродов вызывает сокращение мышц конечностей, активацию или торможение γ-мотонейронов спинного мозга.

У больных с гиперкинезами раздражение разных отделов бледного шара (в зависимости от места и частоты раздражения) увеличивало или снижало гиперкинез.

Стимуляция бледного шара в отличие от стимуляции хвостатого ядра не вызывает торможения, а провоцирует ориентировочную реакцию, движения конечностей, пищевое поведение (обнюхивание, жевание, глотание и т.д.).

Повреждение бледного шара вызывает у людей гипомимию, маскообразность лица, тремор головы, конечностей (причем этот тремор исчезает в покое, во сне и усиливается при движениях), монотонность речи.

При повреждении бледного шара наблюдается миоклония - быстрые подергивания мышц отдельных групп или отдельных мышц рук, спины, лица.

В первые часы после повреждения бледного шара в остром опыте на животных резко снижалась двигательная активность, движения характеризовались дискоординацией, отмечалось наличие незавершенных движений, при сидении - поникшая поза.

Начав движение, животное долго не могло остановиться. У человека с дисфункцией бледного шара затруднено начало движений, исчезают вспомогательные и реактивные движения при вставании, нарушаются содружественные движения рук при ходьбе, появляется симптом пропульсии: длительная подготовка к движению, затем быстрое движение и остановка. Такие циклы у больных повторяются многократно.

Ограда

Ограда (claustrum) содержит полиморфные нейроны разных типов.

Она образует связи преимущественно с корой большого мозга.

Глубокая локализация и малые размеры ограды представляют определенные трудности для ее физиологического исследования. Это ядро имеет форму узкой полоски серого вещества, расположенного под корой большого мозга в глубине белого вещества.

Стимуляция ограды вызывает ориентировочную реакцию, поворот головы в сторону раздражения, жевательные, глотательные, иногда рвотные движения.

Раздражение ограды тормозит условный рефлекс на свет, мало сказывается на условном рефлексе на звук. Стимуляция ограды во время еды тормозит процесс поедания пищи.

Известно, что толщина ограды левого полушария у человека несколько больше, чем правого; при повреждении ограды правого полушария наблюдаются расстройства речи.

Таким образом, базальные ядра головного мозга являются интегративными центрами организации моторики, эмоций, высшей нервной деятельности, причем каждая из этих функций может быть усилена или заторможена активацией отдельных образований базальных ядер.

Функции базальных ядер

Основные структуры базальных ядер (рис. 66). Базальные ядра - это хвостатое ядро (nucleus caudatus ), скорлупа (putamen ) и бледный шар (globulus pallidus ); некоторые авторы относят к базальным ядрам ограду (claustrum ).

Все эти четыре ядра называют полосатым телом (corpus striatum ). Выделяют также стриатум (striatum ) - это хвостатое ядро и скорлупа. Бледный шар и скорлупа образуют чечевицеобразное ядро (nukleus lentioris ). Стриатум и бледный шар образуют стриопаллидарную систему.

66. А — Расположение базальных ганглиев в объеме головного мозга. Базальные ганглии закрашены в красный цвет, таламус – серый цвет, а остальная часть мозга не закрашена.

1 – Бледный шар, 2 – Таламус, 3 – Скорлупа, 4 – Хвостатое ядро, 5 – Миндалевидное тело (Астапова, 2004).

Хвостатое ядро Чечевицеобразное ядро

Б – Трехмерное изображение расположения базальных ганглиев в объеме головного мозга (Гайтон, 2008)

Функциональные связи базальных ядер. У базальных ядер нет входа от спинного мозга, но есть прямой вход от коры больших полушарий .

Базальные ядра участвуют в выполнении двигательных функций, эмоциональных и познавательных (когнитивных) функций .

Возбуждающие пути идут, в основном, к стриатуму: от всех областей коры большого мозга (прямо и через таламус), от неспецифических ядер таламуса, от черного вещества (средний мозг)) (рис.

Рис. 67. Связь контура базальных ганглиев с кортикоспиномозжечковой системой для регуляции двигательной активности (Гайтон, 2008)

Сам стриатум оказывает в основном тормозное и, частично, возбуждающее влияние на бледный шар.

От бледного шара идет самый важный путь в двигательные вентральные ядра таламуса, от них возбуждающий путь идет в двигательную кору большого мозга. Часть волокон от стриатума идет в мозжечок и к центрам ствола мозга (РФ, красное ядро и далее - в спинной мозг.

Тормозящие пути от стриатума идут к черному веществу и после переключения - к ядрам таламуса (рис. 68).

68. Нервные пути, секретирующие различные типы нейромедиаторов в базальных ганглиях. Ах – ацетилхолин; ГАМК – гамма-аминомасляная кислота (Гайтон, 2008)

Двигательные функции базальных ядер. В целом базальные ядра, имея двусторонние связи с корой большого мозга, таламусом, ядрами ствола мозга, участвуют в создании программ целенаправленных движений с учетом доминирующей мотивации.

При этом нейроны стриатума оказывают тормозное влияние (медиатор - ГАМК) на нейроны черного вещества. В свою очередь, нейроны черного вещества (медиатор - дофамин) оказывают модулирующее влияние (тормозное и возбуждающее) на фоновую активность нейронов стриатума.

При нарушении дофаминергических влияний на базальные ядра наблюдаются двигательные расстройства типа паркинсонизма, при которых резко падает концентрация дофамина в обоих ядрах стриатума. Наиболее важные функции базальных ядер выполняют стриатум и бледный шар.

Функции стриатума .

Участвует в осуществлении поворота головы и туловища и ходьбы по кругу , которые входят в структуру ориентировочного поведения. Поражение хвостатого ядра при заболеваниях и при разрушении в эксперименте ведет к насильственным, избыточным движениям (гиперкинезы: хорея и атетоз).

Функции бледного шара .

Оказывает модулирующее влияние на двигательную кору, мозжечок, РФ, красное ядро. При стимуляции бледного шара у животных преобладают элементарные двигательные реакции в виде сокращения мышц конечностей, шеи и лица, активация пищевого поведения.

Разрушение бледного шара сопровождается снижением двигательной активности - возникает адинамия (бледность двигательных реакций), а также ему (разрушению) сопутствует развитие сонливости, «эмоциональной тупости», что затрудняет осуществление имеющихся условных рефлексов и ухудшает выработку новых (ухудшает кратковременную память).



Ганглии или базальные ядра головного мозга, располагаются сразу под корой полушарий и оказывают влияние на двигательные функции организма. Нарушение работы отражается на латеральной системе и как следствие, на мышечном тонусе и анатомическом положении мускулатуры.

Что такое базальные ганглии мозга

Базальные подкорковые ядра головного мозга - это массивные анатомические структуры, расположенные в белом веществе полушарий.

К ганглиям относятся четыре различных образования:

  1. Хвостатое ядро.
  2. Ограда.
  3. Чечевицеобразное ядро.
  4. Миндалевидное тело.
Все базальные структуры имеют оболочки или прослойки, состоящие из белого вещества, отделяющие их друг от друга.

Хвостатое и чечевицеобразное ядро вместе составляют отдельное анатомическое образование, называемое полосатое тело, по латыни corpus striatum .

Основным функциональным назначением базальных ядер головного мозга является торможение или усиление передачи импульсных сигналов от таламуса к участкам коры, отвечающей за моторику и оказывающим влияние на двигательные способности организма.

Где расположены базальные ядра

Ганглии – это часть подкорковых нейронных узлов полушарий головного мозга, расположенных в белом веществе передней доли. Анатомическое расположение базальных ганглий приходится на границу между лобными долями и стволом мозга. Такое расположение облегчает регуляцию двигательных и вегетативных возможностей организма. Функцией базальных ядер является участие в интегративных процессах центральной нервной системы.

Первым симптомом, на который стоит обратить внимание, является мелкая дрожь и непроизвольные движения в руках. Интенсивность проявлений нарастает во время усталости.


За что отвечают базальные ганглии

Базальная часть мозга отвечает за несколько важных функций, напрямую влияющих на самочувствие пациента и регуляцию ЦНС. Три больших подкорковых ядра образуют экстрапирамидальную систему, главной задачей которой является контроль над двигательными функциями и моторикой тела.

Базальные ядра конечного мозга, составляющие, стриопаллидарную систему (входит в состав экстрапирамидальной) отвечают непосредственно за сокращение мышц. По сути, отдел обеспечивает связь базальных ядер с корой головного мозга, регулирует интенсивность и скорость движения конечностей, а также их силу.

Область базальных ядер располагается в белом веществе лобной доли. Умеренная дисфункция ганглий мозга приводит к незначительным отклонениям двигательной функции, особенно заметной при движении: ходьбе и беге пациента.

Функциональное значение базальных ядер также связано с работой гипоталамуса и . Зачастую любые нарушения в структуре и функциональности ганглий сопровождаются дисфункцией питуитарной железы и нижнего отдела полушарий большого мозга.

Виды нарушений и дисфункции ганглий

Поражение базальных ганглий головного мозга отражается на общем самочувствии пациента. Принято считать, что патологические изменения являются катализаторами возникновения следующих болезней:

Признаки дисфункции базальных структур мозга

Патологические нарушения в базальной поверхности головного мозга моментально отражаются на двигательных функциях и моторике пациента. Врач может обратить внимание на следующие симптомы:

Если участки пониженной плотности базальных отделов мозга соединены с другими долями полушарий и нарушения распространяются в соседние отделы, наблюдаются проявления, связанные с памятью, мыслительными процессами.

Для точной диагностики отклонений специалист назначит дополнительные инструментальные диагностические процедуры:

  1. Тесты.
  2. УЗИ головного мозга.
  3. Компьютерная и магнитно-резонансная томография.
  4. Клинические анализы.
Прогноз заболевания зависит от степени поражения и причин, вызвавших заболевание. При неблагоприятном течении патологических изменений назначается пожизненный курс приема препаратов. Оценить тяжесть поражения и назначить адекватную терапию, может только квалифицированный врач – невролог.

К ним относятся хвостатое ядро, чечевицеобразное, ограда и миндалевидное ядро. Между ядрами расположены капсулы белого вещества ( , ). Первые три из перечисленных ядер относятся к полосатому телу (corpus striatum). Они получают топографически упорядоченные проекции от всех полей коры и через таламус оказывают влияние на обширные фронтальные области. Таким образом, полосатое тело обеспечивает подготовку движений, а моторная кора - их точность и экономичность.

ХВОСТАТОЕ ЯДРО (nuklei caudatus) лежит вперед головкой, которая образует наружную стенку переднего рога бокового желудочка. Суживаясь кзади, головка переходит в тело, а затем в хвост, который достигает миндалевидное ядро, расположенное в височном полюсе ( , ).

ЧЕЧЕВИЦЕОБРАЗНОЕ ЯДРО (nukleus lentiformis) по форме сходно с чечевичным зерном. Оно отделено от таламуса внутренней капсулой, а спереди связано с хвостатым ядром. Небольшие прослойки белого вещества делят его на три ядра: скорлупу, медиальный и латералный бледный шар (). Головка хвостатого ядра и скорлупа являются филогенетически более новыми образованиями, относятся к neostriatum. В их структуре различают многочисленные пятна - "стриосомы", которые функционально связаны с лимбической системой. Между "стриосоами" находится так называемый "матрикс", состоящий преимущественно из приходящих волокон и связан с экстрапирамидной моторной системой.

БЛЕДНЫЙ ШАР (globus pallidus) является филогенетически более старым образованием (paleostriatum). Своим углом оно обращено к колену внутренней капсулы (), имеет более светлую окраску, чем скорлупа. Его дорсальная часть вовлечена в "экстрапирамидный моторный цикл" управления позой и инициации движений. хикъ

Рис. 32. Базальные ядра


1. таламус
2. концевая полоска
3. III желудочек
4. лобный рог I желудочка
5. височный рог Iж.
6. затылочный рог Iж.
7. сосудистое сплетение
8. гиппокамп
9. бахромка
10. зубчатая извилина
11. головка хвостатого ядра
12. хвост
13. тело
14. столбы свода
15. передняя спайка
16. прозрачные перегородки
17. полость прозрачной перегородки

Рис. 33. Базальные ядра и капсулы полушария (горизонтальный срез)


18. скорлупа
19. бледные шары
20. ограда
21. кора островка
22. самая наружная капсула
23. наружная капсула
24. внутренняя капсула:
25. колено
26. корково-ядерный путь
27. корково-спинномозговой
28. корково-красноядерный
29. височно-теменно-затылочный
30. слуховой
31. зрительный
32. таламус
33. лобно-мостовой
34. передняя таламическая лучистость
35. затылочная лучистость

Рис. 34. Базальные ядра конечного мозга (полусхематично)


А -- вид сверху
B -- вид изнутри
C -- вид снаружи

1. хвостатое ядро
2. головка
3. тело
4. хвост
5. таламус
6. подушка таламуса
7. миндалевидное ядро
8. скорлупа
9. наружный бледный шар
10. внутренний бледный шар
11. чечевицеобразное ядро
12. ограда
13. передняя спайка мозга
14. перемычки

ОГРАДА (claustrum) - тонкая пластинка серого вещества, расположена латеральнее от скорлупы и отделена от нее наружной капсулой. По своему происхождению является как бы частью коры. В эту структуру входят волокна из амигдалоидного комплекса концевой полоски, поясной извилины, передней спайки. Свои волокна ограда направляет в ядра переднего продырявленного вещества,

дорсомедиального таламуса и латеральную часть миндалевидного тела ( , ).

МИНДАЛЕВИДНОЕ ТЕЛО (corpus amigdoloideum), располагается в толще височного полюса. Различают базально-латеральную часть- это большая группа ядер, имеющих отношение к формированию памяти, интеграции вегетативных реакций при стрессе и др.



Последние материалы раздела:

Чем атом отличается от молекулы Сравнение атома и молекулы
Чем атом отличается от молекулы Сравнение атома и молекулы

Еще много веков назад люди догадывались, что любое вещество на земле состоит из микроскопических частиц. Прошло какое-то время, и ученые доказали,...

Что такое молекула и чем она отличается от атома Что такое изотопы
Что такое молекула и чем она отличается от атома Что такое изотопы

Еще много веков назад люди догадывались, что любое вещество на земле состоит из микроскопических частиц. Прошло какое-то время, и ученые доказали,...

Чем отличаются изотопы одного элемента друг от друга Чем атом отличается от молекулы
Чем отличаются изотопы одного элемента друг от друга Чем атом отличается от молекулы

Вся материя вокруг нас, которую мы видим, состоит из различных атомов. Атомы отличаются друг от друга строением, размером и массой. Существует...