А. В

Артиллерия на кораблях должна размещается так, чтобы орудия имели наибольший возможный угол обстрела и при этом им была обеспечена надёжная броневая защита, удобная подача боеприпасов и т. п. Исходя из этих требований и поставленных перед артиллерией задач, существуют различные варианты её расположения.

Размещение артиллерии на корабле

Корабельная артиллерия имеет множество вариантов размещения. По виду артиллерийские установки делятся на:

  • Установки башенного типа
  • Установки палубного типа
  • Установки палубно-башенного типа

Выбор типа артиллерийской установки зависит от поставленных целей и сферы ее применения. К примеру, башенные установки для орудий ПВО неудобны и редко применяются, поскольку требуется большая скорость наводки, которой не удаётся достигнуть при стрельбе из башенных установок под большими углами возвышения.

Башенные артиллерийские установки

  • Башенные установки лучше всего удовлетворяют тактическим требованиям, перечисленным в предыдущем разделе. В башне легче всего достигнуть защиты личного состава орудий и механизмов от неприятельских снарядов, химического оружия и авиабомб. Каждая башня состоит из боевого отделения (защищенная верхняя часть башни) и подбашенного отделение (скрытой части башенной установки, которая включает лифты и артиллерийских погребов)

Башенные установки делятся на одноорудийные и многоорудийные. Каждая из концепций имеет свои преимущества и недостатки. Сохранение живучести артиллерии лучше обеспечивается в одноорудийных установках. Очевидно, в случае, когда 4 орудия размещены в 4-х башнях, при повреждении одной из башен, теряется четверть артиллерии, а при размещении 4-х орудий в двух двухорудийных башнях – теряется половина артиллерии. Однако важным является ещё и фактор веса при проектировании корабля. Так, чем меньше веса сопутствующего оборудования требуется на одно орудие, тем больше можно усилить корабль дополнительным вооружением и/или бронезащитой, улучшить техническое оборудование, а следовательно и тактические качества.

Устройство башенной артиллерийской установки главного калибра видно на рисунке:

Корабельная башенная артиллерийская установка с картузным орудием времён Второй мировой войны (кликабельно)

1 - вторая нижняя палуба, 2 - снарядный погреб, 3 - первая нижняя палуба, 4 - зарядный погреб, 5 - средняя палуба, 6 - шахта элеватора, 7 - главная палуба, 8 - барабан, 9 - перегрузочное отделение, 10 - верхняя палуба, 11 - катки, 12 - лафет, 13 - орудийная башня

На схеме не показаны механизмы наводки ствола и устройство продувки после выстрела. Для лучшего понимания размеров башенной установки на рисунке изображен человек ростом 172 см.

Следует отметить, что в башенных установках может размещаться не только артиллерия главного калибра, но и более мелкокалиберная и скорострельная вспомогательная артиллерия. Для неё справедливо утверждение, что скорострельность орудий снижается по мере увеличения их количества в одной башне. Происходит это, главным образом, вследствие того, что с увеличением числа орудий в каждой башне, уменьшается объём помещения, в пределах которого работает её расчёт, осуществляющий заряжание. При заряжании орудий средних и мелких калибров, значительная часть манипуляций осуществляется вручную и теснота боевого отделения негативно сказывается на свободе манипуляций и приводит к уменьшению скорости заряжания. Затрудняется перегрузка снарядов из погребов в башни, что в свою очередь также замедляет скорость стрельбы. Влияние тесноты в башнях сказывается сильнее по мере увеличения калибра орудий. На основе перечисленных рассуждений можно прийти к выводу о целесообразности в некоторых случаях для повышения скорострельности переходить даже к одинарным башням, учитывая возникающие при этом негативные факторы, как то увеличение удельного веса, приходящегося на одно орудие, преодоление сложности расположения на корабле и т. п.

Рассмотрим плюсы и минусы различных концепций многоорудийных башенных установок на примере четырёхорудийных башен ГК.

Установка артиллерии в двух- и трёхорудийных башнях даёт по сравнению с установкой в одноорудийных башнях значительную экономию. Так, при переходе от двухорудийных установок к трёхорудийным, выигрыш в весе, приходящийся на одно орудие, составляет 15%, при переходе к четырёхорудийным установкам выигрыша в весе практически нет из-за усложнения устройства приспособлений подачи боеприпасов. Это проиллюстрировано в таблице:

В силу отсутствия выигрыша в удельном весе каждого орудия, выбор между размещением 3-х или 4-х орудий в башне является нетривиальной задачей. В пользу четырёхорудийных башен служат следующие факторы:

  1. вероятность, что вражеский снаряд попадет в одну из трех четырёхорудийных башен меньше, чем вероятность попадания в одну из четырех трёхорудийных,
  2. четырёхорудийная башня имеет больший вес, соответственно сопротивления ударам снарядов выше,
  3. броневую защиту четырёхорудийных башен, при том же общем весе артиллерии осуществить легче,
  4. заряжание четырёхорудийных башен более удобно из-за симметричности,
  5. большая масса башни уменьшит поворот при выстреле,
  6. с точки зрения организации стрельб удобнее комбинировать залпы, чем при трёхорудийных башнях.

На основе вышеперечисленного специальная комиссия, создававшаяся для такого сравнения, сделала вывод о том, что 4-х орудийные башни выгоднее 3-х орудийных, но при условии, что орудия будут расположены автономно и отделены солидными траверзами. В то же время стоит отметить весьма существенный недостаток четырёхорудийных башен, заключающийся в том, что очень слабой её стороной является передняя стенка – амбразуры. Важным является и вопрос компоновки орудий внутри четырёхорудийной башни. Рассматривались варианты построения, когда каждое орудие абсолютно автономно, будучи отделено от соседних толстыми 102-127 мм (4-5 дюймов) броневыми траверзами или же вариант, когда два соседних орудия соединяются вместе в одну обойму так, чтобы башня состояла как бы из двух двухствольных орудий. В пользу второй конструкции имеют место следующие предпосылки:

  1. башни могут быть спроектированы более узкими, что должно содействовать увеличению углов обстрела,
  2. упрощение схемы.

К недостаткам второго подхода можно отнести то, что:

  1. выстрелы придётся осуществлять в каждой башне сразу из двух орудий, расположенных по одну и ту же сторону от диаметральной плоскости, что может вызвать поворот башни,
  2. больше вероятность, что будут одновременно повреждены сразу два орудия,
  3. в случае осечки или затяжного выстрела у одного из орудий, откат обоих орудий будет всё равно совершаться за счёт работы другого, и следовательно, обнаружить непроизводство выстрела первого орудия будет трудно, следствием чего могут быть несчастные случаи,
  4. из-за неодновременности выстрелов двух орудий, что почти всегда и происходит, может возникнуть перекос орудий в обойме и вызываемый этим перекос всей системы.

Расположение башен ГК на кораблях различных классов значительно отличается. К примеру, расположение башенных установок на линкорах и крейсерах значительно отличается. Это связано с размерами кораблей, боевым применением, калибрами орудий главного калибра и множеством других факторов.

Расположение артиллерии на линкорах:

Расположение артиллерии на крейсерах:

Осевое расположение наиболее массивных башенных установок боевых кораблей объясняется тем, что при такой компоновке обеспечивается наилучшая остойчивость судна.

Палубные артиллерийские установки

Палубные установки используются на тех кораблях, на которых требования экономии в весе не позволяют иметь башенные установки (в частности из-за ограниченного водоизмещения судна), а именно на эсминцах, лидерах, крейсерах водоизмещением 4000-6000 т, авианосцах и т. п.

Палубные артиллерийские установки не имеют подбашенного отделения, а орудие и обслуживающие системы раздельные. В отличии от башенных установок, у таких установок полностью изолированные погреба и пути подачи боеприпасов.

Палубные установки, как уже упоминалось, широко применяются для зенитных орудий и пулемётов. Преимущества палубных установок по сравнению с башенными:

  1. больше точность наводки,
  2. больше скорость наводки,
  3. легче производится наводка на больших углах возвышения при качке,
  4. большие углы возвышения достигаются легче: максимальные углы возвышения для палубных установок с 152-100 мм орудиями, имеющими щиты, могут достигать значений 60-70 градусов, для орудий 75 мм – ещё больше,
  5. палубные установки являются наивыгоднейшими в отношении веса по сравнению с башенными и гнездовыми, и это преимущество ещё более увеличивается с переходом от ординарных к парным и тройным установкам.

К недостаткам палубных установок можно отнести следующие:

  1. защита палубных установок значительно уступает башенным,
  2. меньшая величина горизонтальных углов обстрела, если орудие в палубной установке стоит на борту,
  3. при наличии парных и тройных установок возможно обеспечение одновременного залпа из всех орудий, поэтому, также как и в башенных установках, вследствие разницы в затяжках выстрелов следует ожидать большего разброса снарядов из-за меньшей массы палубных установок.

Палубно-башенная установка СМ-5

Палубно-башенные артиллерийские установки

Артиллерийские установки палубно-башенного типа имеют часть броневой защиты, что обеспечивает лучшую защищенность по сравнению с палубными установками.

Также орудие, механизмы наведения и заряжания являются одним целым, а все остальные системы размещаются отдельно. Подбашенное отделение состоит из подъемного механизма (элеватора).

Броневая защита таких установок чаще всего представляет собой незамкнутую противопульную и противоосколочную броню, которая является вращающейся частью установки. Палубно-башенные установки по сравнению с палубными улучшают условия использования артиллерии и лучше защищают личный состав и механизмы.

Благодаря совмещению неплохой защищенности и относительно малого веса, данный тип орудий получил широкое распространение на эскадренных миноносцах и крейсерах.

Вооружение

Артиллерия главного калибра линкоров типа «Айова»-девять 406-мм орудий Mk -7 в трех трехорудийных башенных уста­новках. Новые пушки Mk -7 были значительно мощнее своих предшественниц -406-мм 45-калиберных Mk -б, установленных на «Саут Дакоте». А от разработанных в 1918 году 406-мм орудий Mk -2 и Mk -3 с такой же длиной ствола (50 калибров) Mk -7 выгод­но отличались меньшим весом (108,5 т против 130,2 т) и более современной кон­струкцией.

Ствол орудия Mk -7 - скрепленный, с лейнером. Его диаметр в районе зарядной каморы равнялся 1245 мм, у дула - 597 мм. Число нарезов - 96, их глубина - 3,8 мм, крутизна нарезки - один оборот на 25 ка­либров. Канал ствола на протяжении 17,526 м от дульного среза был хромиро­ван (толщина слоя - 0,013 мм). Поршне­вой затвор качающегося типа откидывал­ся вниз. Конструктивно он имел 15 ступен­чатых секторов и поворачивался на 24°. После выстрела канал ствола продувался воздухом низкого давления.

Характеристики орудий главного калибра линкоров «Саут Дакота» и «Айова»

Модель орудия

406-мм Mk-6 («Саут Дакота»)

406-мм Mk-7 («Айова»)

Калибр, мм

406,4

406,4

Вес ствола без затвора, т

87,2*

108,5

Вес качающейся части, т

139,3

Длина орудия, мм/клб:

общая

18694/46

20726/51

канала ствола

18166/44,7

20 198/49,7

Длина/объем зарядной

каморы, мм/л

2344/380,1

2710/442,5

Длина нарезной части, мм

15668,2

17334,5

Вес снаряда, кг:

бронебойного

1225

1225

фугасного

Вес заряда, кг

Начальная скорость

снаряда, м/с:

бронебойного

фугасного

Давление в стволе, кг/см2

2835

2910

Живучесть ствола, выстрелов

Макс. дальность стрельбы

бронебойным снарядом при

угле возвышения 45°, м

33740

38720

*С затвором, но без механизмов его привода. Вес здесь и далее приво­дится в метрических тоннах.

Трехорудийные башни по компоновке были подобны своим предшественницам с «Саут Дакоты» и, несмотря на возросший вес, имели такой же диаметр роликового погона. Орудия устанавливались в индиви­дуальных люльках, угол вертикального на­ведения - от -5° до +45°. Заряжание осуще­ствлялось при фиксированном угле возвы­шения +5°. Все приводы - электрогидравли­ческие; для горизонтальной наводки служил электродвигатель мощностью 300 л.с., для вертикальной - три мотора по 60 л.с., по од­ному на каждый ствол.

406-мм снаряды хранились вертикаль­но в неподвижном двухъярусном кольце­вом магазине внутри барбета башни. Меж­ду магазином и поворотной структурой ба­шенной установки находились две кольце­вые платформы, способные вращаться независимо от последней. На эти платфор­мы подавались снаряды, которые затем доставлялись к подъемникам (поданным трубам) при любом угле горизонтального наведения башни. Подъемников было три, причем центральный представлял собой вертикальную трубу, а крайние - изогну­тую; каждый из них приводился в действие 75-сильным электродвигателем. Снаряд подавался к орудию вертикально, а затем с помощью гидроцилиндра укладывался на лоток. Досылатель имел индивидуальный двигатель мощностью в 60 л.с.

Заряды хранились в двухъярусных по­гребах в самых нижних отсеках, примыкав­ших к неподвижной кольцевой структуре башни. Они подавались в беседках по шесть штук тремя зарядными цепными подъемни­ками, каждый из которых приводился в дей­ствие электромотором мощностью 100 л.с. В конструкции башен «Айовы», как и у ее предшественниц, не было перегрузочного отделения, отсекавшего цепочку подачи за­рядов от погребов. Американцы уповали на довольно сложную систему герметичных дверей, теоретически не допускавших рас­пространение огня по подъемникам. Впро­чем, такое решение выглядит не бесспор­ным - риск взлететь на воздух у американ­ских линкоров был все же выше, чем у боль­шинства их современников.

Цапфы орудий располагались довольно близко к лобовой плите башен, и в случае необходимости пушку можно было извлечь через амбразуру без демонтажа башни.

Характеристики трехорудийной башни линкора «Айова»

Вес вращающейся части (без снарядов), т.................1728-1735

Диаметр роликового погона, м................................................ 10,49

Внутренний диаметр барбета, м............................................. 11,35

Расстояние между осями орудий, м..........................................2,97

Откат при отдаче, м..................................................................... 1,22

Макс, скорость вертикальной наводки, град./с.......................... 12

Макс.скорость горизонтальной наводки, град./с.........................4

Цикл стрельбы, с............................................................................30

По проекту боезапас «Айовы» должен был состоять в основном из 1016-кг броне­бойных снарядов Mk -5, но в середине 1939 года на вооружение ВМС США поступил новый снаряд Mk -8 весом 1225 кг, ставший главной «дубинкой» всех новых американ­ских линкоров, начиная с «Норт Кэролайны». Для своего калибра он являлся самым тяжелым в мире - для сравнения: 406-мм снаряд английского линкора «Нельсон» ве­сил 929 кг, а 410-мм японского «Нагато» - 1020 кг. Заряд взрывчатки снаряда Mk -8 со­ставлял 1,5% его веса; донный взрыватель Mk -21 взводился при ударе снаряда о бро­ню толщиной более 37 мм и срабатывал с замедлением 0,033 с. Полный заряд поро­ха (297 кг) обеспечивал ему начальную ско­рость 762 м/с; уменьшенный заряд снижал эту цифру до 701 м/с, что давало снаряду баллистику, идентичную той, какую имели снаряды 45-калиберных пушек Mk -6.

Оборотной стороной чрезмерной мощи американской морской артиллерии стал повышенный износ ствола. Поэтому когда у линкоров появилась новая задача - обстрел береговых объектов - было реше­но создать значительно более легкий снаряд. Фугасный Mk -13, принятый на вооружение в конце 1942 года, имел вес всего 862 кг. Он оснащался несколькими типами взрывателей - ударным мгновенного действия Mk -29, ударным с замедлением Mk -48 (задержка 0,15 с) и дистанционной труб­кой Mk -62 (установка времени до 45 с). Относительный вес взрывчатого вещества снаряда Mk -13 - 8,1%. В конце войны, ког­да главный калибр линкоров использовал­ся исключительно для бомбардировки бе­рега, для снарядов Mk -13 применялись уменьшенные (147,4 кг) заряды, обеспечи­вавшие начальную скорость 580 м/с.

В послевоенные годы в боекомплекте линкоров типа «Айова» появилось несколь­ко новых образцов 406-мм снарядов. В част­ности, на базе корпуса фугасного Mk -13 были созданы Mk -143, Mk -144, Mk -145 и Mk -146. Все они оснащались электронны­ми дистанционными трубками разных типов; Mk -144 и Mk -146 в качестве начинки несли соответственно 400 и 666 разрывных гранат. Кроме того, для старых снарядов Mk -13 приняли усовершенствованные механические трубки M 564 (установка времени до 100 с), заменившие Mk -62.

В начале 1950-х годов для орудия Mk -7 был разработан снаряд Mk -23, оснащенный ядерной боеголовкой W -23 с тротиловым эквивалентом 1 кт. Снаряд весил 862 кг, имел длину 1,63 м и внешне практически не отличался от Mk -13. Ядерные артиллерийские боеприпасы официально состояли на вооружении линкоров типа «Айова» с 1956 по 1961 год, но фактически все это время они хранились на берегу.

Наконец, уже в 1980-е годы американцы предприняли попытку создать подкалиберный снаряд для сверхдальней стрельбы из 406-мм орудий. Он должен был иметь вес 454 кг, начальную скорость 1098 м/с и максимальную дальность полета 64 км. Правда, эта разработка осталась на стадии экспериментального образца.

Баллистика бронебойного снаряда Mk -8 (1225 кг, 701 м/с) орудия Mk -7

Дальность,

ярдов/м

Угол возвышения ствола

Угол падения снаряда

Время полета снаряда, с

Конечная скорость снаряда, м/с

6000/5490

3°23"

3°38"

8,28

10000/9140

5°59"

6°81"

14,45

16000/14 630

10°33"

12°51"

24,76

20000/18 290

14°09"

17°56"

32,55

26000/23 770

20°43"

27°01"

46,03

30000/27430

26°14"

34°04"

56,64

36000/32 920

39°25"

47°54"

79,80

Стандартный боезапас 406-мм башни № 1 составлял 390 выстрелов, башни № 2 - 460 и башни № 3 - 370. На третьей палубе имелся сквозной коридор, оснащенный монорельсом и прозванный американскими моряками «Бродвеем»; он соединял погре­ба всех трех башен и позволял передавать снаряды от носовых орудий кормовым и наоборот. В районе поперечных переборок коридор перекрывали легко демонтируемые водонепроницаемые заглушки.

Заряды хранились в шелковых картузах и начинялись бездымным порохом марки SP . Обычный заряд включал в себя шесть картузов весом по 49,5 кг. Зарядных погре­бов у башен № 1 и № 3 было по шесть, у башни № 2 - восемь.

Система управления огнем главного ка­либра включала два КДП (директора) Mk -38, один КДП Mk -40, комплект вычислительных приборов и в качестве резерва -три башен­ных дальномера. Посты Mk -38 располага­лись на носовой и кормовой надстройках; каждый из них имел по одному 8-метровому оптическому стереодальномеру Mk -48, ра­дару Mk -8 и несколько оптических прицелов. В 1945-1952 годах радары Mk -8 на всех кораблях заменили более современными Mk -13. Высота расположения носового КДП над ватерлинией по оси дальномеров со­ставляла 35,4 м, кормового - 20,7 м.

Директор Mk -40 был установлен на кры­ше боевой рубки; в его состав входили оп­тические прицелы и РЛС Mk -З. «Миссури» и «Висконсин» вступили в строй с новыми радарами Mk -27; в 1945 году ими пере­оснастили и первую пару линкоров.

Вся информация от КДП поступала в центральный артиллерийский пост, где об­рабатывалась механическим счетно-реша­ющим устройством (автоматом стрельбы) Mk -8. В 1950-е годы на линкорах установи­ли дополнительный вычислитель Mk -48, предназначенный для обеспечения стрель­бы по береговым целям.

Башни главного калибра оснащались длиннобазовыми (14-м) оптическими даль­номерами: башня № 1 -совмещающим Mk -53, башни № 2 и № 3 - стереоскопи­ческим Mk -52. Они имели 25-кратное уве­личение и оборудовались системой стаби­лизации. Кроме того, в каждой башне пре­дусматривалось по шесть 12-кратных оп­тических прицелов.

В качестве универсальной артиллерии на «Айове» планировалось применить пер­спективные 152-мм пушки с длиной ство­ла в 47 клб. Однако расчеты показали, что шесть спаренных 152-мм установок будут весить 1667 т, в то время как десять спа­ренных 127-мм орудий (стандартный со­став артиллерии среднего калибра всех предшествующих линкоров)- 1267 т. По­этому от разработки новых пушек отказа­лись в пользу проверенных 127-миллимет-ровок - благо, те зарекомендовали себя с наилучшей стороны.

В итоге, состав универсальной артилле­рии- 10 спаренных 127-мм установок Mk -28 и четыре КДП Mk -37 - в точности по­вторял имевшийся на «Саут Дакоте». Что было совсем не плохо: благодаря удачным 127-мм артустановкам (особенно после введения снарядов с радиовзрывателем) американские линкоры оказались самыми эффективными кораблями ПВО в мире.

Зенитная артиллерия ближнего боя по проекту должна была включать 12 28-мм автоматов и столько же 12,7-мм пулеметов, но фактически состояла из четырехствольных 40-мм автоматов «Бофорс», а также спаренных и одноствольных 20-мм «эрликонов». Управление огнем «бофорсов» осуществлялось с помощью директоров-колонок Mk -51 (на «Нью-Джерси» - Mk -49). «Эрликоны» сначала наводились индивидуально, но в 1945 году на всех линкорах появились прицельные колонки Мк-14, позволявшие автоматически выдавать данные для стрельбы и из этих орудий.

Характеристики зенитных орудий

Модель

орудия

Калибр, мм/

длина ствола

в клб

Вес снаряда,

кг

Начальная

скорость

снаряда, м/с

Дальность

стрельбы/

досягаемость

по высоте, км

Скорострельность

макс.,

выстр./мин

Mk-12

127/38

24,2-25

792,5

16,64/11,34

Mk-1

40/56

0,91

10,1/6,95

Mk-4

20/70

0,123

5/3,05

Состав малокалиберной артиллерии на линкорах типа «Айова» постоянно менялся, о чем можно судить из приведенной таблицы.

Состав легкого зенитного вооружения линкоров

Корабль

июль 1943 г.

декабрь 1944 г.

апрель 1945 г.

июнь 1947 г.

октябрь 1951 г.

ВВ-61 «Айова»

19x4 - 40 мм

52x1 - 20мм

19x4 - 40 мм

52x1 - 20 мм

19x4 - 40 мм

52x1 - 20 мм

8x2 - 20 мм

15x4 - 40 мм

16x2 - 20мм

15x4 - 40мм

ВВ-62 «Нью-Джерси»

20x4 - 40 мм

49x1 - 20 мм

20x4 - 40 мм

49x1 - 20 мм

20x4 - 40 мм

49x1 - 20мм

8x2 - 20 мм

16x4 - 40 мм

8x2 - 20 мм

20x4 - 40 мм

16x2 - 20 мм

ВВ-63 «Миссури»

20x4 - 40 мм

49x1 - 20мм

20x4 - 40 мм

49x1 - 20 мм

8x2 - 20 мм

20x4 - 40 мм

22x1 - 20мм

8x2 - 20 мм

20x4 - 40 мм

32x2 - 20 мм

ВВ-64 «Висконсин»

20x4 - 40 мм

49x1 - 20 мм

2x2 - 20 мм

20x4 - 40 мм

9x1 - 20 мм

8x2 - 20 мм

16x4 - 40 мм

16x2 - 20 мм

20x4 - 40 мм

16x2 - 20 мм

Примечание: «Айова» на момент ввода в строй (февраль 1943 г.) несла 15x4-40 мм и 60x1-20 мм автоматов.

Авиационное вооружение - стандартное для американских кораблей: две пороховые катапульты Mk - VI в кормовой части и три гидросамолета Воут OS 2 U «Кингфишер». Ангара не было, два самолета манились непосредственно на катапультах и третий - между ними на палубе.

После посадки на воду их поднимали на борт краном. Запас авиабензина составлял 32 506 л. Катапульты приводились в дей­ствие 127-кг зарядом бездымного пороха и могли разгонять летательный аппарат массой 3,7 т до скорости 105 км/ч. В 1945 году «кингфишеры» заменили более совре­менными самолетами Кертисс SC -1 «Сихок» (первым их получила «Айова» - уже в марте). Они эксплуатировались до 1948 года, но затем все авиационное вооруже­ние демонтировали - по мере развития радиолокации потребность в самолетах-разведчиках отпала.

Фотография, присланная читателем, является иллюстрацией вопроса. Насколько целесообразно было размещать орудия ПВО на башнях главного калибра линкоров и как зенитчики могли вести огонь по самолетам в бою, если велась стрельба из ГК?


Вопрос не просто интересный, а бьющий наповал. Признаюсь, пришлось перелопатить изрядное количество материалов, чтобы сложилась более-менее нормальная картинка.

Но начну издалека. С Первой мировой, когда на арене сражений появился самолет. И когда все поняли, что с этой стрекочущей этажеркой из фанеры, ткани и расчалок надо считаться. Ибо теперь с неба могло прилететь, и прилететь неприятно. А главное, зачастую более точно, нежели артиллерийский снаряд.

Соответственно, был дан клич «Линкоры, вооружайся кто чем может!», так как гроза морей и океанов линейный корабль оказался наиболее беззащитен перед атаками с воздуха. Размеры, маневренность, скорость - все это играло на руку летчикам.

И линкоры начали спешно обрастать стволами, направленными в зенит.

Так как первыми попали под модернизации ПВО ветераны Первой мировой войны, то немудрено, что устанавливать орудия ПВО стали на башнях ГК. Больше вменяемого места на дредноутах не было. Первыми это начали делать англичане, за которыми последовали все остальные.

На башнях ГК англичане начали монтировать 76-мм пушки, мачты, посты и прочие возвышенности достались пулеметам. За англичанами потянулись все остальные.


Итальянский "Джулио Чезаре"

Вполне логичное решение. Ведь зенитчикам того времени требовалось что? Правильно, обзор пространства. Посты управления зенитным огнем (ПУАЗО) появились несколько позже.

Правда, в интервале между Первой и Второй мировыми войнам выяснилось, что башня ГК - далеко не самое лучшее место для ПВО. Потому что действительно, находиться там во время стрельбы орудий ГК было просто нереально и губительно для здоровья. В боевых уставах стран вообще предписывалось полное отсутствие экипажа на палубе во время стрельбы главного калибра.

У консерваторов-англичан долгое время была в ходу инструкция для расчетов ПВО, которые по сигналу ревуна должны были покинуть свои места и укрыться в башенном каземате. При тогдашней скорострельности в 1-2 выстрела в минуту - то еще удовольствие…

Однако все здравомыслящие военные деятели того времени понимали, что вражеская авиация вряд ли будет ждать, пока корабль противника отстреляется, чтобы начать атаку. И в середине 30-х годов орудия ПВО стали покидать башни ГК.


ЛК "Литторио" (Италия)


ЛК "Ришелье" (Франция)


ЛК "Ямато" (Япония)


У "Ямато" на второй и третьей башнях были мелкокалиберные установки, на тыльной части, но их было всего 4, в сравнении с общим количеством стволов ПВО незначительно.


ЛК "Нельсон" (Великобритания)


ЛК "Бисмарк" (Германия)


Все новейшие линкоры Второй мировой уже были с "чистыми" башнями.

Вторым ответом морской авиации стало появление так называемого универсального орудия, способного выполнять как роль вспомогательного калибра, так и ПВО.

Это была уже иная концепция вооружения. Вспомогательные орудия покинули бортовые казематы и разместились в бронированных башнях на палубе. Линкоры приобрели иной облик, скажем так, целей на палубах прибавилось, но получили взамен крупнокалиберную (до 127-мм у англичан и американцев и до 150-мм у немцев) зенитную артиллерию дальнего действия.

Плюс всюду, куда можно было воткнуть, устанавливались зенитные автоматы мелких калибров, от 20 до 40 мм.

Рекордсменом в части зенитной артиллерии стал, однозначно, «Ямато». 12 двухорудийных башен калибром 127-мм, 53 трехствольных автомата калибром 25-мм. Что не помогло, и суперлинкор вчистую проиграл американской палубной авиации.

Возвращаемся к непосредственной теме вопроса. О наших линкорах и их ПВО. Которого до 1938 года, в общем-то, и не было.


"Гангут". Еще в российском флоте. Зениток не наблюдаем...


"Петропавловск". Та же картина

Ни для кого не является секретом, что с анализом итогов Первой мировой войны в СССР было примерно так же, как с ПВО. То есть, очень плохо. Все, чем располагал наш флот - это 76-мм и 45-мм зенитные пушки и 37-мм автоматы. Но автоматическая 37-мм пушка 61-к, по сути, копия шведского 40-мм «Бофорса», появилась только в 1938 году.

До 1938 года все, чем обладали наши линкоры, это 76-мм зенитные пушки Линдера и пулеметы. Но в течении нескольких лет корабли прошли модернизацию, которая коснулась и ПВО. Лучшим по этому показателю стал линкор «Парижская Коммуна» - «Севастополь».

На него было установлено:
- 6 штук 76-мм зенитных полуавтоматических орудий образца 1931 года, изготовленные по технологии немецкой фирмы «Рейнметалл» (7,5 cm Flak L/59);
- 16 автоматов 61-к калибром 37-мм;
- 16 пулеметов ДШК.

Над "Октябриной" тоже поработали.

Довольно сносно, если не смотреть на иностранных коллег. Для примера я решил взять английский линкор «Ройял Соверен», он же «Архангельск», который в 1944-49 годах проходил службу в рядах Северного Флота.

Как я не раз уже замечал, хороший корабль британцы бы не отдали. Так и здесь, линкор с 1942 по 1944 гг. простоял в резерве, так как Адмиралтейство считало его ни на что уже не годным. Потому отдали нам.

Против авиации противника «Архангельск» был вооружен:
- 8 орудиями «Виккерс» калибра 102 мм в четырех двухорудийных щитовых установках;
- 24 автоматическими орудиями «Виккерс» калибра 40 мм в двух восьмиствольных и двух четырехствольных установках;
- 60 автоматическими орудиями «Эрликон» калибра 20 мм (46 в спаренных и 14 в одноствольных установках).

Почувствуйте, как говорится, разницу. А это, замечу, ровесники. «Ройял Соверен» вошел в состав флота в 1916 году, «Севастополь» - в 1914-м…

Но вся проблема в том, что наши линкоры не могли себе позволить такое ПВО. Вся «начинка» у «Севастополя» осталась все такой же, на уровне 1-й мировой войны. А «Архангельск» имел радары, которые позволяли обнаружить цели намного раньше, чем наблюдатели «Севастополя» и скорректировать огонь ПВО.

Так что «Севастополь», который, по сути своей, играл на Черном море роль ночной плавучей артбатареи, мог позволить себе разместить орудия ПВО на башнях ГК.

Цитата из «официальной биографии»: «В период боевых действий на Чёрном море: линкор совершил 15 боевых походов, прошёл, в сложных боевых условиях, около 8 тысяч миль (7700 миль); его орудия главного калибра произвели 10 стрельб (более 3 тыс. выстрелов) по позициям противника под Севастополем и на Керченском полуострове; его зенитная артиллерия участвовала в отражении 21 атаки авиации противника, сбив 3 самолёта; в результате эффективных мер, принимаемых командованием флота и лично командующим Черноморской эскадрой, корабль не получил ни одного серьёзного повреждения».

«Меры, принимаемые командованием» - это базирование в Поти и Батуми, до которых немецкие бомбардировщики не могли долететь в принципе. Плюс "работа" в темное время суток. С соответствующей эффективностью...

Балтийским коллегам «Севастополя» повезло меньше. Использование «Марата» и «Октябрьской революции» в Финском заливе в качестве артиллерийских батарей привело к известным результатам.

Хотя на Балтике определенные выводы после того, как «Марат» перестал быть кораблем, сделали.

Резюме: размещение ПВО на башнях главного калибра советских линкоров было связано не с желанием сделать расчеты ПВО инвалидами, а обусловлено многими факторами:

1. Отсутствие радаров и возможности полноценного управления огнем ПВО.
2. Отсутствие возможности установить универсальные орудия (из-за четырехбашенной компоновки для них просто не было места) в должном количестве.
3. Отсутствие в необходимых количествах зенитных автоматов.

Кстати, устаревшая уже на момент постройки компоновка башен русских линкоров фактически свела на «нет» все попытки хоть как-то усилить ПВО. Вот снимок «Октябрьской революции» после ремонта с установкой 130-мм универсальных орудий в башнях Б-13 и Б-2МЛ.

На следующем снимке, как видите, остатки "Марата". Тоже с модификацией.

В принципе, ПВО, размещенное на башнях главного калибра у плавучей батареи, - это нормальное решение. Ибо если идет налет вражеской авиации, то главный калибр может и не стрелять. Настоящему линкору (коими наши линкоры никак не являлись) приходилось сложнее. Это доказали «Ямато», «Принц Уэльский» и многие другие корабли.

Невероятно, но факт: российские/советские линкоры класса «Севастополь» («Петропавловск»/«Марат», «Гангут»/»Октябрьская революция» и «Севастополь»/«Парижская коммуна») в течение Первой и Второй мировых войн ни разу не вступали в бой с кораблями противника.

Но это уже больше по теме наших флотоводцев-адмиралов.

В итоге страны, имеющие на вооружении и использующие по назначению линкоры, довольно быстро отказались от неудобной практики размещения орудий ПВО на башнях главного калибра. Так как советские линкоры являлись по сути плавучими артбатареями крупного калибра, то они могли позволить себе, исходя из задач, размещать ПВО на башнях ГК. Боевые задачи, выполняемые этими кораблями, не предусматривали одновременного отражения атак авиации противника и ведения огня главным калибром.

В начале XX в. военное кораблестроение развивалось бурными темпами. В это время на смену батарейным броненосцам пришли эскадренные броненосцы. Важнейшим нововведением на кораблях данного типа стало оснащение башенной артиллерией главного калибра, хотя по инерции сохранялась размещаемая по борту артиллерия среднего и малого калибра. Считалось, что она будет эффективна при отражении атак миноносцев и для повреждения слабо бронированных частей вражеского броненосца. Башня артиллерии главного калибра на броненосцах времен русско-японской войны была сложным техническим сооружением. Устройство такой башни представлено на рис.1.

Рис.1. Устройство башни артиллерии главного калибра русского броненосца "Ретвизан" времен русско-японской войны.

Twin 305 mm Gun Turret - башня с двумя орудиями калибра 305 мм; The 12 inch/ 40 caliber M1892 gun was effective out to approximately 10, 000 yards - орудие M1892 калибром 12 дюймов и длиной ствола 40 калибров имело эффективную дальность стрельбы около 9000 м; 1. Armored door - броневая дверь; 2. Armored commander’s cupola - броневой колпак командира башни; 3. Breech - затвор орудия; 4. Gun layer’s cupola - броневой колпак наводчика; 5. Muzzle sight - мушка; 6. Pinion for cannons - цапфы; 7. Electrical controls for gun laying - электроприводы систем наведения орудий; 8. Turret rotation gear - ролик системы вращения башни; 9. Handwheel for turret rotation - штурвал ручного вращения башни; 10. Battery charger - зарядник в нижнем положении; 11. Electrical controls for ammunition feed - электропривод системы подачи боеприпасов; 12. Armored barbettes - броневые барбеты.

Управление башней главного калибра

Командир башни получал вычисленную дистанцию до цели от артиллерийского офицера на мостике посредством системы электрических циферблатов, установленных в башне. Если артиллерийский офицер устанавливал свой циферблат на 5000 ярдов, то эти данные мгновенно передавались командирам башен, и их циферблаты также устанавливались на эту дистанцию. Пеленг и азимут главной артиллерийской батареи тогда устанавливался вручную или с помощью электроприборов. Пороховые заряды и снаряд поднимались электрической тележкой из трюма, укладывались на специальный лоток и затем подавались в ствол орудия. Процедура зарядки орудий главного калибра русских броненосцев шла на 30-60 сек. медленнее, чем на японских кораблях. Но с учетом ограниченного боезапаса к орудиям главного калибра это едва ли сильно сказывалось в ходе долговременного сражения. Затем производился выстрел из орудий с помощью электропереключателя на японских кораблях и с помощью шнура на русских кораблях.

Рис.2. Гордость японского флота броненосец "Mikasa" в английском сухом доке в 1902 г. Заказанный в 1896 г. броненосец "Mikasa" класса "Majestic" служил в качестве флагманского корабля адмирала Того в ходе русско-японской войны.

Военно-морские флоты в период 1888-1905 гг. прошли переоснащение, поскольку появились первые эскадренные броненосцы, позже составившие класс линейных кораблей и заменившие корабли прежних поколений. Новые технические решения в области корабельной артиллерии, броневой защиты, взрывчатых веществ, связи и управления боем произвели поистине революционные изменения.

Теперь и Япония, и Россия основали свою военно-морскую мощь на линейных кораблях с двенадцатидюймовыми орудиями главного калибра в основном британской и французской постройки. Обе стороны готовили свои флоты к войне, и в период быстрых технических изменений легко было совершить ошибки, которые бы дорого стоили на поле боя. В ходе войны за преобладание на море в 1904-1905 гг. это было первое и последнее столкновение примерно равных по силам броненосцев до появления подводных лодок и боевой авиации.


Рис. 3. Русские броненосцы "Сисой Великий" (на переднем плане) и "Наварин" (на заднем), участники Цусимского сражения, решившего исход русско-японской войны.

При разработке концепции линейного корабля в период между 1873 и 1895 гг. были решены три основных проблемы, без решения которых концепция не могла быть реализована.

1. Была разработана конструкция башенной артиллерии на поворотных барбетах, при этом необходимо было в каждом конкретном случае решать сопутствующие вопросы - орудия какого калибра размещать в башнях, и какой должен быть объем боезапаса.

2. Нужно было определять, какой должна быть схема размещения артиллерии на борту броненосца и схема оптимального размещения броневой защиты на корпусе корабля.

3. Необходимо было решать вопрос выбора максимальной скорости хода броненосца и дальности автономного плавания.

Первые броненосцы имели ограниченное количество артиллерии и медленно заряжающиеся орудия главного калибра, а значит и малую скорострельность. На броненосцах ранней постройки башни были слишком большого веса, и проектировщикам приходилось утапливать башни в корпус броненосца, чтобы повысить остойчивость.

Изобретение поворотных барбетов уменьшило вес башни и позволило размещать их выше без потери мореходности и остойчивости корабля. На раннем этапе развития броненосцев снаряды гладкоствольных орудий не могли пробить даже однослойную броню.

Но в 1863 г. В Великобритании был разработан вариант бронебойного снаряда, получивший обозначение "Palliser", пробивавший броню толщиной до 10 дюймов. Хотя появление в 1870-х гг. многослойной брони снизило уязвимость броненосцев от попадания бронебойных снарядов противника, это привело в свою очередь к появлению артиллерии больших калибров и большей огневой мощи.

Французские ученые разработали новое взрывчатое вещество известное как мелинит и бездымный порох. Британия приобрела патенты на оба изобретения и усовершенствовала их в 1889 г.

Единственной проблемой, которую старались решить инженеры всех военно-морских держав было повышение скорострельности артиллерии главного калибра. Таким было состояние флотов, использующих в той или иной мере эти достижения инженерной мысли перед войной 1904-1905 гг.


Рис. 4. Русский броненосец французской постройки "Цесаревич" на ходовых испытаниях в Тулоне в 1903 г. Это был для своего времени один из самых современных броненосцев с сужающимися кверху обводами корпуса, поясом из броневых плит, бронепалубами и вспомогательной артиллерией в виде башен со спаренными орудиями.



Броненосец "Бородино" - характеристики


Водоизмещение - 14181 т
Длина общая - 121 м

Ширина - 23,2 м

Главный калибр

Силе артиллерии кроется боевая мощь линейного корабля. Какая же это артиллерия? Какие пушки входят в нее? Сколько их, как ведут из них огонь, какое действие производят их снаряды?

Наступательная тяжелая артиллерия линейного корабля обычно состоит из восьми-двенадцати орудий очень крупного калибра. Корабль вооружен еще и другими менее сильными орудиями. Их калибр в несколько раз меньше, чем калибр тяжелых орудий корабля. Поэтому тяжелая артиллерия линейного корабля называется еще и главной или главным калибром.

До сих пор еще не существует линейного корабля, у которого главный калибр был бы больше 406 миллиметров (16 дюймов) или меньше 305 миллиметров (12 дюймов). Обычно чем больше главный калибр, тем меньше число его орудий. При калибре в 406 миллиметров число орудий на современных линейных кораблях не превышает девяти.

Орудие калибра 406 миллиметров пока еще «царит» на линейных кораблях и не превзойдено по силе и эффективности своего удара. Оно отличается огромными размерами. На стволе такой пушки можно усадить в ряд, как на скамейке, сорок матросов. Вес системы 125 тонн. Снаряд такого орудия, если его поставить на дно, выше взрослого человека, а вес – больше одной тонны. Но энергия выстрела так велика, что эта тяжесть летйт вдаль больше чем на 40 километров.

У читателя, естественно, могут возникнуть законные вопросы. К чему эти огромные пушки, если в наше время существует своего рода «крылатая артиллерия» – самолеты-бомбардировщики? Ведь эта артиллерия неизмеримо дальнобойнее, она настигает свои цели даже на расстоянии в сотни километров. Ее снаряды – бомбы – бывают не только не меньше, но даже больше снарядов главного калибра линейного корабля. При этом не нужно ни дорогостоящих кораблей-гигантов, ни огромных пушек. В чем же кроются преимущества главного калибра линейного корабля? Только ли в том, что самолетам-бомбардировщикам трудно приблизиться и «накрыть» сильно вооруженную и хорошо охраняемую цель? Оказывается, существует еще одно большое преимущество главного калибра линейного корабля: удары его снарядов намного сильнее бомбовых ударов самолетов.

Мы уже знаем, что чем больше скорость полета снаряда, тем больше и сила его удара. Бомбы, сброшенные с самолета обычным способом, падают вниз под влиянием силы тяжести. Скорость падения при этом колеблется в зависимости от высоты сбрасывания. Она не больше 270 метров в секунду, если высота сбрасывания около 6 километров. Если же высота сбрасывания 600-700 метров, скорость падения бомбы снижается до 140-150 метров в секунду.

А с какой скоростью летит снаряд орудия главного калибра? Его выбрасывает из орудия невероятная сила: на каждый квадратный сантиметр площади основания снаряда при выстреле давит сила почти в 2,5-3 тонны. Но дно огромного снаряда имеет площадь 1300 квадратных сантиметров. Это значит, что снаряд выбрасывается из орудия силой до 4000 тонн. Вот почему в момент вылета из дула начальная скорость снаряда – это приблизительно километр в секунду. И даже в самом конце своей дистанции скорость полета снаряда немного меньше полукилометра в секунду. Эти огромные скорости и придают снаряду орудия главного калибра ту чудовищную разрушительную силу, которая преодолевает сопротивление самой прочной брони. Какая же это сила, на что она способна?

На дистанции в 7 километров снаряд калибра 406 миллиметров может пробить стальную плиту толщиной около 600 миллиметров.

Подсчитано, что при этом энергия удара одного снаряда достигает 9 300 000 килограммометров. Это значит, что удар нанесен с силой, достаточной для того, чтобы поднять тяжесть в 9300 тонн на высоту в один метр. А какой эффект получится, если на море появятся пушки калибром 457 миллиметров? Вес каждой из них достигнет 180-200 тонн. Снаряд будет весить примерно полторы тонны, а дальность выстрела вырастет до 50-60 километров. Пробивающая сила снаряда намного увеличится.

Где же разместилось на линейном корабле его грозное наступательное оружие-орудия-гиганты?

На верхней палубе линкора по средней продольной линии расположены три-четыре огромные стальные бронированные «коробки». Они опираются на цилиндрические основания – барабаны. В передней части «коробки» два-три, иногда четыре отверстия-амбразуры. Из каждой амбразуры на несколько метров вперед торчит ствол огромного орудия, Задняя же казенная его часть скрывается внутри «коробки». Там же сосредоточены механизмы управления ее вращением и движениями ствола орудия. Эти «коробки» – главные орудийные башни линейного корабля. На некоторых линейных кораблях (более старой конструкции) все главные башни сосредоточены в носовой части, в других (более новых) – и в носовой и в кормовой части, чтобы можно было вести огонь по противнику и при отступлении.

Но «коробка», которая возвышается над палубой, это еще не вся башня, а только ее верхний, четвертый, «этаж». Глубоко вниз, в недра корабля, уходит ствол башни, еще три этажа. И чтобы понять работу башни, знакомство с ней надо, начинать с первого, нижнего «этажа».

Там, в первом «этаже», помещаются артиллерийские погреба для снарядов и зарядов. Специальные механизмы помогают артиллерийской команде быстро подавать снаряды и заряды к нижним подъемникам* которые доставляют боеприпасы на второй «этаж» в перегрузочное отделение. Здесь их перегружают на верхние подъемники, которые подают снаряды и заряды к орудиям на самый верхний, четвертый, «этаж».



Непосредственно под верхней боевой частью башни на ее третьем «этаже» расположено рабочее отделение, где помещаются механизмы заряжания и наведения орудий. И, наконец, в самой «коробке» на четвертом «этаже» на очень массивных и прочных металлических балках укреплены орудийные станки, а на них гигантские пушки.

Устройство главных башен – это сумма самых удивительных чудес современной техники.

Ведь для того чтобы правильно навести орудие на движущуюся цель, надо иметь возможность поворачивать башню, а также придавать орудиям необходимый угол возвышения. И это нужно делать мгновенно, так как линейный корабль и его противник быстро передвигаются по волнующемуся морю.

Башня весит до 2000 тонн, но небольшой поворот штурвала заставляет ее плавно вращаться. Мощные моторы и специальные регуляторы обеспечивают легкость и любую скорость вращения – от наименьшей цо наибольшей – до 10° в секунду. Скорость вращения -10° в секунду, наверное, кажется читателю небольшой, но присмотримся внимательнее к этой цифре: ведь радиус вращения дула орудия не превышает 15 метров; весь путь, который пройдет конец дула орудия, если он опишет полную окружность, будет равен приблизительно 94 метрам. А так как 10° составляют только 1/36 часть полного кругового пути орудия, то за одну секунду дуло орудия переместится на 94/36 = 2,6 метра.

Как будто совсем немного. Но ведь на расстоянии хотя бы в 10 километров основание треугольника с углом при вершине в 10° составит 1,8 километра. Следовательно, ясно, что ствол орудия, стреляющего на большую дистанцию, всегда «нагонит» врага, передвигающегося с любой возможной на море скоростью. А пока идет эта «погоня», наводчики следят за углом возвышения. Специальные механизмы помогают с любой необходимой скоростью опустить или поднять многотонную массу ствола.

Точная работа механизмов заставляет снаряд и заряд подняться на четвертый «этаж» в боевые отделения. Тут же они исчезают в каморе орудия . Плавно, легко и быстро вращаются 2000 тонн металла башни,

устанавливаются на определенный угол стволы орудий. Все готово к выстрелу. Через каждые 10-15 секунд офицер, управляющий стрельбой, может произвести по противнику залп из нескольких орудий. Но необходимо, чтобы этот сокрушительный удар поразил цель, чтобы тонны стали и взрывчатых веществ не упали в море. Каким же путем артиллеристы корабля обеспечивают это?


Центральная наводка

Как же прицелиться в корабль противника, если он находится на расстоянии в 20-40 километров?

Дым из труб, дым от пожаров на кораблях, искусственные дымовые завесы – все это закрывает цель. Недолетевшие снаряды противника падают в море и вздымают лохматые водяные столбы высотой иногда в 80-100 метров, они также закрывают горизонт. И даже если нет всех этих помех, все равно не видно далекого противника: земля шарообразна, и вражеский линкор находится вне пределов видимости, далеко за горизонтом. Ведь палуба линейного корабля только на несколько метров возвышается над водой. На дистанции в несколько километров наводчик часто не видит цели.

Как быть? Как добиться, чтобы ничто не мешало наводчику видеть противника? Как увеличить дальность видимости, «отдалить» горизонт от глаз наводчика? Надо сделать так, чтобы наводчики орудий могли наблюдать за противником с какой-то высоты. Тогда горизонт отдалится на много километров.

Но наводчиков нельзя удалить от орудия. Значит, нужно иметь еще других наводчиков, которые будут находиться где-то на возвышенной точке корабля и оттуда передавать данные для стрельбы через какой-то единый, центральный пост наводчикам у орудий. Так и была разрешена задача наводки орудий на дальние дистанции стрельбы.

Линейный корабль имеет две мачты: переднюю (фок-мачту), расположенную ближе к носу, и заднюю (грот-мачту) – поближе к корме. Фок-мачта линейного корабля совсем не похожа на такую мачту, которая обычно встречается на судах. Она представляет собой грузную башнеобразную надстройку, со всех сторон облепленную площадками и пристроенными закрытыми помещениями – рубками.



Ночной залп линейного корабля


На верху этой мачты находится помещение для артиллеристов-наблюдателей. Это – командно-дальномерный пост, здесь определяются исходные, самые основные данные для наведения орудий на цель.

Но дистанция стрельбы может быть настолько большой, что и такого наблюдения мало. Поэтому на линейных кораблях есть свои самолёты. Это гидросамолеты – разведчики и корректировщики (бывает среди них и бомбардировщик). Число их на линейных кораблях доходит до четырех. Для них имеются на палубе и ангары и своего рода «аэродром» – поворотный металлический мост со скользящей по нему тележкой. Самолет устанавливается на тележку, мост поворачивается внешним свободным концом к морю. С большой скоростью тележка скользит по мосту и в конце своего хода выбрасывает самолет в воздух. Такой «аэродром» называется катапультой по сходству своего действия с метательными машинами древности и средних веков.

Самолеты поднимаются в воздух и летают между своим кораблем и целью. Наблюдателям на этих самолетах хорошо видны все попадания. По радио они передают на свой корабль результаты наблюдения за падениями снарядов у цели. По этим данным управляющие стрельбой решают задачу стрельбы.

Здесь нужны необычайная скорость и точность передачи. Если сведения передавать по телефону, на это уйдет слишком много времени. Наводчик должен заняться исполнением приказания, произвести находку на основании полученных сведений – это тоже долго. Наконец, наводчик может плохо расслышать или сделать ошибку при наводке. Во время морского боя противники находятся в непрерывном движении. Пока сведения будут передаваться, пока будет произведена наводка, цель успеет настолько переместиться, что прицел окажется неверным. Выброшенные в воздух тонны стали и взрывчатых веществ упадут в море и не принесут противнику вреда.

Кроме того, в большинстве случаев главные орудия линейного корабля стреляют залпами по одной цели. Артиллеристы заинтересованы в том, чтобы как можно больше снарядов попадало в противника. А для этого необходимо, чтобы наводка каждого отдельного орудия точно совпадала по высоте, направлению и времени с наводкой остальных пушек и чтобы все они стреляли в одно и то же мгновение.

Здесь на помощь морякам приходит высшее достижение современной техники управления механизмами на расстоянии – телемеханика.

В наше время на кораблях применяется управление огнем на расстоянии- «центральная наводка». На верхушке фок-мачты в командно- дальномерном посту находится офицер, управляющий стрельбой орудий главного калибра корабля.

Здесь же находится особый оптический прибор – визир центральной наводки. Его обслуживают два наводчика. Один производит наводку орудия по направлению на цель – это горизонтальная наводка; другой по высоте -это вертикальная наводка. Дистанция полета снаряда зависит от того, насколько поднят ствол пушки, на какой угол по отношению к горизонтальной плоскости он поднят (или опущен). Каждому углу возвышения (подъема) орудия соответствует определенное

расстояние полета снаряда. Поэтому и необходимо навести орудие не только по направлению, но и по высоте (дать ему угол возвышения).

Оба наводчика по указанию управляющего огнем направляют визир центральной наводки на противника и уже не спускают его с цели. В командно-дальномерном посту находятся и другие оптические наблюдательные приборы – дальномеры для определения расстояния до цели – и зрительная труба управления стрельбой.

От приборов командно-дальномерного поста тянутся вниз провода- электрические «нервы» центральной наводки. Заключенные в бронированную трубу, они проходят сквозь всю высоту фок-мачты, тянутся дальше к «центральному посту», который прячется глубоко в недрах корабля, ниже ватерлинии. Там, в помещении центрального поста, находится главный прибор центральной наводки. Этот прибор обслуживается офицером-артиллеристом и матросами – артиллерийскими электриками.

Неприятель обнаружен; еще несколько секунд, и на циферблате прибора в центральном посту стрелка автоматически отмечает, на каком расстоянии находится противник. Управляющий огнем наводит на неприятельский корабль оптическую трубу, как бы «приближает» его к своим глазам. Теперь ему ясно видно, какой это корабль, в каком направлении и с какой скоростью он идет. Все эти данные передаются в центральный пост, а уже отсюда окончательные данные горизонтальной и вертикальной наводки передаются дальше, в башни. Как это делается?

Вся техника управления огнем интересна и очень сложна. Но особенно большое значение имеет работа центрального поста. Всевозможные приборы, доски с сигнальными лампочками, ряды выключателей, кнопок, рубильников, циферблатов и различных указателей наполняют помещение центрального поста. Паутина телефонных проводов и переговорных труб соединяет его с другими постами на корабле и с орудиями.

Здесь в секунды решаются сложнейшие задачи.

Получив данные стрельбы сверху, артиллеристы центрального поста должны внести ряд поправок. Они учитывают курс и скорость собственного корабля, курс и скорость корабля-противника, направление и скорость ветра в верхних слоях воздуха, температуру воздуха и другие данные, которые влияют на выстрел, на скорость снаряда, на направление и дальность его полета. Все эти сведения центральный пост получает от других специальных постов корабля.

В главном приборе центрального поста они автоматически перерабатываются так, что получаются окончательные «полные» величины углов горизонтального и вертикального наведения орудий. По электрическим «нервам» центральной наводки эти величины почти мгновенно передаются в башни. На орудиях находятся принимающие приборы с циферблатами-шкалами и стрелками.

Наводчик у орудия не должен наблюдать за противником – он только следит за шкалой своего прибора, за стрелкой на циферблате. Как только стрелка приняла определенное положение, ему остается согласовать с ней вторую стрелку, которая связана с механизмами движения орудия. Стальная громада зашевелилась. Тысячи тонн стали в башне и орудиях поворачиваются и занимают указанное стрелкой положение. Тогда опять без вмешательства наводчика у орудия из центрального поста во все наведенные башни передается электрическая команда: «Залп». Четыре-шесть снарядов по каждой такой команде вырываются в воздух и несутся на врага по одному пути. Почему же только четыре-шесть, а не снаряды всех орудий главного калибра?

Оказывается, при одновременной стрельбе всех орудий залпы следовали бы один за другим через каждые 30-40 секунд. А на море такая скорострельность часто бывает недостаточна. Ведь снаряды летят до цели около минуты. За это время цель может резко изменить направление движения (курс). Значит, надо вести стрельбу так, чтобы при изменении движения цели можно было внести соответствующие поправки для очередных залпов. Это удается, если огонь ведется не из всех орудий сразу, а последовательными «очередями»: сначала стреляет одна часть орудий, затем другая. При этом залпы могут следовать один за другим через 10-15 секунд. Меткость стрельбы настолько высока, что на полном ходу и на встречных курсах, когда корабли-противники с огромной скоростью перемещаются друг относительно друга, залпы быстро «накрывают» цель.

Электрические «нервы» центральной наводки – важнейший боевой орган корабля. Поэтому для них устраивают надежную защиту. На пути от верхнего поста управления огнем их размещают внутри бронированной трубы, которая опускается вниз, проходит сквозь бронированные палубы и доводит провода до стальной коробки центрального поста. Связь центрального поста с башнями также надежно защищена.

И все же может случиться так, что система центральной наводки будет повреждена. Такое повреждение очень ослабляет эффективность огня линейного корабля, распыляет его, снижает меткость.

Каждому командиру башни приходится в таком случае обходиться своими собственными средствами. У него есть свои приборы наводки и дальномеры и визир для наблюдения за противником. Визир устроен, как перископ подводной лодки, и высовывается наружу, на крышу башни. С его помощью можно видеть противника изнутри башни.

В башне находится несколько младших командиров и матросов. Они обслуживают механизмы передачи боеприпасов, заряжания и наводки.

Боевой коллектив орудийной башни делится на группы подачи, заряжания и наводки. Первые две группы обязаны подавать заряды и снаряды, заряжать орудия, полностью подготавливать их к выстрелу; группа наводки осуществляет наводку и стреляет. Работа наводчиков и заряжающих – они называются «комендорами» – видна, понятна, это специальность очень привлекательная. Но без точной, качественной и своевременной помощи подающих, без строгой четкости их работы самые лучшие комендоры не сумели бы достаточно хорошо выполнять свои очень ответственные обязанности.

Вот работает комендор – горизонтальный наводчик. У него перед глазами прибор центральной наводки и прицельная перископическая труба. Он не отрывается от циферблата прибора (при стрельбе центральной наводкой) или от окуляра прицельной трубы (при прицельной самостоятельной стрельбе). Во втором случае он все время вращает маховичок поворота башни, направляя орудие на цель. Поворот маховичка заставляет башню поворачиваться с любой необходимой скоростью. Это – работа электромоторов и очень искусно устроенных регуляторов.

Горизонтальный наводчик поймал цель. В первом случае это значит, что совмещены обе стрелки на приборе центральной наводки. Во втором – вертикальная линия, нанесенная на стекле прицела, точно совпадает с целью. Теперь нужно заставить башню все время поворачиваться так, чтобы стволы орудий следовали за движением цели и оставались точно наведенными на нее.

Второй комендор – вертикальный наводчик – при помощи такого же маховичка опускает или поднимает орудия до того момента, пока горизонтальная нить на стекле прицела не пересечет цель (при центральной наводке он вместо этого просто совмещает обе стрелки на циферблате прибора вертикального наведения орудия). Противник ^пойман», когда обе нити – и вертикальная горизонтального наводчика и горизонтальная вертикального наводчика – одновременно пересекают цель (или когда будут совмещены стрелки на приборах центральной наводки у обоих комендоров).

Вся боевая работа коллектива башни производится при помощи механизмов. Но без людей, знающих и любящих свое дело, механизмы не будут работать безотказно, быстро, точно. Поэтому от всех членов коллектива башни: и от офицеров и от матросов, от заряжающих и от комендоров, зависят боеспособность корабля, бесперебойность и эффективность его огня. Вот почему четкость и точность работы всего коллектива башни играют огромную роль в успешном исходе боя.


***

Кроме орудий главного калибра, линейный корабль вооружен еще пушками – «помощниками», вспомогательной артиллерией. Основное ее назначение – отражение атак миноносцев, подводных лодок, торпедных катеров. Но на сравнительно близких дистанциях вспомогательная артиллерия может помочь главному калибру и в бою с линейными кораблями и с крейсерами.

Вспомогательная артиллерия состоит из орудий калибром 102- 152 миллиметра. На новейших линейных кораблях наиболее распространен калибр 127 миллиметров (5 дюймов). Таких пушек на линейном корабле набирается до двадцати. Они расположены на палубе или по одной открыто под защитой стальных щитов или большей частью попарно в башнях поровну по обоим бортам корабля. Их дальнобойность- до 18 километров, они отличаются значительной скорострельностью: через каждые 5-7 секунд орудие выбрасывает очередной снаряд. Эти снаряды отличаются большим разнообразием. Здесь и бронебойные – против крейсеров и глубинные (ныряющие) – против подводных лодок (когда они еще только что погрузились), здесь и осветительные с раскрывающимися парашютами – для обнаружения дели ночью: такие снаряды взрываются, а в воздухе, точно яркие круглые фонари, висят на парашютах осветительные патроны и освещают море на полтора-два километра. Фугасные снаряды взрываются при соприкосновении с целью и их осколки разлетаются во все стороны. Такими снарядами стреляют по мелким судам, по войскам на берегу, по верхним незащищенным надстройкам больших кораблей.

Погреба с боеприпасами прячутся глубоко внизу под броневыми палубами!.

Вспомогательная артиллерия имеет свои отдельные приборы центральной наводки. Они также расположены в центральном посту управления стрельбой и в основах своего устройства и применения аналогичны приборам главного калибра.


Огненный „еж"

Это было в 1940 году. Самолеты-торпедоносцы потопили и повредили три итальянских линейных корабля и другие корабли на их стоянке в Таранто. А 7 декабря 1941 года 105 японских самолетов напали на американские корабли в Пирл-Харбор. Они потопили шесть и повредили два линейных корабля.

В обоих случаях линейные корабли находились на своих стоянках, были лишены возможности маневрировать. Вскоре после успеха в Пирл-Харбор японские самолеты-торпедоносцы потопили в Южно- Китайском море английский линейный корабль «Принс оф Уэлс» и линейный крейсер «Рипалс». В последнем случае корабли обладали необходимой подвижностью и скоростью и все же были побеждены. Причина этого была в том, что зенитная артиллерия не могла противостоять комбинированным атакам пикирующих бомбардировщиков и торпедоносцев.

От нападений с воздуха линейные корабли необходимо было защищать истребительной авиацией. Поэтому во вторую половину второй мировой войны в охранение линейного корабля на больших переходах морем почти всегда входил а-вианосец. Но в то же время необходимо было усилить собственную защиту кораблей, их зенитную артиллерию на тот случай, если все же не окажется во-время воздушного прикрытия или самолетам противника удастся прорваться сквозь него.

И это было сделано.

Прежде всего еще больше увеличилось число зенитных установок на корабле. На новейших линейных кораблях число зенитных установок – многоствольных пушек-автоматов и пулеметов – доходит до 130. Мало этого, их вспомогательная артиллерия, с которой мы уже познакомились, состоит из 20 «универсальных» орудий. Это значит, что пушки могут вести и зенитный огонь, что общее количество зенитных установок доходит до 150, что каждый квадратный метр палубы и надстроек корабля защищен зенитными орудиями разных типов и калибров.

Но не одно количество решило задачу; оказалось, что и качество зенитной артиллерии стало другое, еще более высокое. Малые зенитные пушки линейных кораблей (калибром 20 и 40 миллиметров) в последние годы выбрасывали в единицу времени примерно в 50 раз больше металла, чем это было до второй мировой войны. Если же к этому прибавить улучшения в технике управления огнем и увеличение поражающего действия снарядов, то можно считать, что зенитная артиллерия линейного корабля за последние годы многократно усилилась.

Вот почему она успешно борется с авиацией и наносит ей тяжелые поражения.

Как устроено и как ведет огонь зенитное орудие на корабле, в чем его отличие от других пушек?

Атакующие самолеты находятся в воздухе иногда очень высоко, иногда на небольшой высоте, иногда совсем низко над морем, – значит, ствол зенитной пушки должен обладать возможностью менять угол возвышения от 0 до 90°. Воздушный противник может внезапно появиться с любого борта, с носа или с кормы корабля – значит, ствол зенитной пушки должен обладать возможностью кругового обстрела, менять горизонтальный угол от 0 до 360°.

В этих двух особенностях – внешнее отличие зенитных установок от других корабельных пушек. Но существуют и другие, не внешние, но еще более важные отличия. Самолет перемещается в воздухе во много раз быстрее, чем те цели-корабли, по которым ведут огонь обыкновенные, большие или малые орудия. Значит, необходимо не только иметь возможность выбирать любой угол возвышения или любой горизонтальный угол, надо еще иметь возможность очень быстро изменять эти углы гораздо быстрее, чем при стрельбе из обычных орудий. Поэтому ствол зенитной пушки во много раз «поворотливей», чем у других орудий корабля.

Но и скорость наводки не исчерпывает всех боевых качеств зенитной пушки. Современные самолеты проносятся над кораблем С невероятной скоростью. Промежуток времени, в течение которого они остаются в радиусе действия зенитной артиллерии, очень мал. Поэтому зенитные орудия должны еще отличаться значительной скорострельностью. В первую мировую войну зенитные пушки выпускали 15 снарядов в минуту. Перед второй мировой войной это число увеличилось до 25. А зенитные малокалиберные автоматы и пулеметы выпускают очереди со скоростью сотни выстрелов в минуту. Зенитные пушки стреляют так называемым унитарным патроном: заряд и снаряд объединены одной гильзой. Скорострельность зенитной артиллерии достигается полной автоматизацией заряжания: подача патрона, закрывание затвора, производство выстрела, открывание затвора после выстрела, выбрасывание гильзы и подача нового патрона из магазина или ленты, «установка трубки» – все это осуществляется автоматически работающими механизмами затвора и подачи.

И, наконец, последняя особенность, отличающая зенитное орудие от обычной пушки и венчающая «зенитные» качества его стрельбы, – это специальный зенитный прицел, очень сложный по устройству, принципиально отличный (по содержанию решаемых им задач) от нормальных прицельных приспособлений.

Для создания противовоздушной пушки не потребовалось никаких особых изобретений, кроме рационализации конструкций поворотных механизмов и станка. Но для вооружения ее быстрым и метким глазом, нащупывающим точку поражения врага в воздухе, пришлось изобрести совершенно новый прицел, который так и назван «зенитным». В чем заключается разница между обычным и зенитным прицелом? При наводке в цель обыкновенной пушки определяется расстояние до цели. Затем из таблиц узнают необходимый для данной дистанции угол возвышения. Чтобы найти направление (выстрела), определяют «курсовой угол дели» – угол, образуемый средней продольной линией корабля и воображаемой линией, соединяющей цель с точкой расположения пушки. Если же цель при этом движется (в определенном направлении), то определяется еще и так называемый «угол упреждения» – прицеливаются не в ту точку, где в данное мгновение находится цель, а в некоторую другую, расположенную впереди нее по направлению движения: движущаяся цель и снаряд должны в этой новой точке встретиться.

Все эти задачи решаются в одной горизонтальной плоскости, то-есть в двух измерениях. Совсем по-другому обстоит дело в зенитном прицеле. Его задача очень усложняется новым обстоятельством: цель всегда находится в воздухе. Кроме направления и дистанции, приходится определять еще и высоту-решать задачу в двух плоскостях и в трех измерениях. Прибавляется новый угол, образуемый прямой (воображаемой), соединяющей точку прицеливания с орудием и горизонтальной плоскостью. Самолет движется в несколько раз скорее самой быстрой наземной цели. Поэтому тот же угол упреждения приходится определять с огромной быстротой. Для преодоления всей трудности зенитного прицеливания изобретены очень сложные, точные оптические и электромеханические приборы со своего рода счетными машинами, которые в кратчайший срок, измеряемый долями секунды, решают поставленную трудную задачу.

Далеко не сразу эти приборы оказались достаточно совершенными. Они были изобретены в первую мировую войну, затем непрерывно улучшались до второй мировой войны. И все же, когда война разразилась, оказалось, что необходимо резко улучшить эти приборы. Тогда ученые и изобретатели нашли способы довести их до еще большего совершенства.

Чтобы не перегружать артиллерию корабля орудиями специального назначения, в последнее время стали производить универсальные пушки, пригодные и для зенитной стрельбы и для стрельбы по кораблям. Снаряды крупных зенитных пушек могут «достать» воздушного противника с высоты до 12 000 метров. Малокалиберные автоматические зенитки и пулеметы ведут огонь по быстро маневрирующим самолетам на высоте ниже 1000-1500 метров.



Зенитная установка на современном боевом корабле


Зенитные пулеметы стреляют пулями, рассчитанными на прямое ударное попадание в самолет, а зенитные пушки (как и другие орудия) стреляют снарядами с особым устройством – дистанционной трубкой. Это устройство регулирует время зажигания взрывчатой начинки снаряда. Поэтому, если снаряд и не попадет в цель, он все равно разорвется в заданной точке. Разлетающиеся осколки поражают значительное пространство вокруг точки разрыва.

Существуют два способа зенитной стрельбы. Один из них сводится к тому, что каждое орудие ведет огонь почти совершенно самостоятельно. Извне, с поста управления, оно получает только основные данные, которые не поддаются определению силами наводчиков: высоту положения цели, скорость ее и направление. Остальные данные определяются приборами, установленными на пушке. Наводчик при помощи специального визирного (оптического) прибора наблюдает за самолетом. Вспомогательные приборы определяют необходимые поправки, а специальный прибор дает установку дистанционной трубки снаряда.

Бывают случаи, когда необходимо вести именно рассредоточенный, распыленный зенитный огонь. Во время напряженного боя с авиацией противника, когда приходится одновременно вести огонь по многим целям, а эти цели идут на корабль с разных направлений и на разных высотах (звездный налет), – только таким огнем и можно отразить атаку.

И тогда сильно выручает отличная подготовка, высокое мастерство каждого командира, особенно командира орудия.

Если же приходится обстрелять цель, идущую с одного направления или создать огневую завесу перед нею, – тогда применяется второй способ зенитной стрельбы, ведут полностью централизованный огонь.

При этом все данные для зенитной стрельбы готовятся в отдельном центральном посту. Орудие получает готовые величины углов направления и прицеливания, а также установку дистанционной трубки. Пушки не имеют ни оптических приборов, ни счетных машин. Наводчики при орудиях не следят за самолетом. Работа наводчиков заключается в установке полученных данных на трех циферблатах приборов (стрелки устанавливаются на определенные деления), а это автоматически обеспечивает правильную наводку орудия.

Никаких расчетов делать не приходится, их производит центральный пост управления.

В наше время управление огнем зенитной батареи уже не ведется голосовой командой – выстрелы ее заглушают. Применяются специальные телефоны, дающие орудийному расчету возможность работать совершенно свободно обеими руками. Комендоры делают свою работу молча, выполняя команду, передаваемую им по телефону. В центральном посту три человека у микрофонов непрерывно передают слова команды вполголоса. Но телефон требует много времени на передачу данных.

Кроме того, могут быть искажения передачи, ошибки. Поэтому к приборам предъявляются еще большие требования автоматизации передачи. На помощь приходит «синхронная» передача. На главном приборе управления указатель отмечает на круговой шкале »угол направления. Это направление должно быть передано орудию. Вместо того чтобы считывать его со шкалы и передавать по телефону, указатель направления включается в.систему электрической передачи. При помощи этой системы установка передается на такие же указатели, помещенные на каждом орудии. Они движутся «синхронно»-точно так же и с той же скоростью, как и указатель на главном приборе. Получив эту «немую» команду, наводчик исполняет ее – совмещает другую стрелку, связанную с механизмом движения ствола, с указателем на командной шкале.




Примечания:

Водоизмещение – вес воды, вытесняемой погруженной в нее частью корабля и равный полному его весу.

Камора – гладкостенная часть канала ствола, в которой помещаются заряд в: снаряд.



Последние материалы раздела:

Чем атом отличается от молекулы Сравнение атома и молекулы
Чем атом отличается от молекулы Сравнение атома и молекулы

Еще много веков назад люди догадывались, что любое вещество на земле состоит из микроскопических частиц. Прошло какое-то время, и ученые доказали,...

Что такое молекула и чем она отличается от атома Что такое изотопы
Что такое молекула и чем она отличается от атома Что такое изотопы

Еще много веков назад люди догадывались, что любое вещество на земле состоит из микроскопических частиц. Прошло какое-то время, и ученые доказали,...

Чем отличаются изотопы одного элемента друг от друга Чем атом отличается от молекулы
Чем отличаются изотопы одного элемента друг от друга Чем атом отличается от молекулы

Вся материя вокруг нас, которую мы видим, состоит из различных атомов. Атомы отличаются друг от друга строением, размером и массой. Существует...