Основные понятия органической химии. Гибридизация

В процессе определения геометрической формы химической частицы важно учитывать, что пары валентных электронов основного атома, включая и те, которые не образуют химической связи, находятся на большом расстоянии друг от друга в пространстве.

Особенности термина

Рассматривая вопрос, касающийся ковалентной химической связи, часто применяют какое понятие, как гибридизация атомных орбиталей. Этот термин связан с выравниванием формы и энергии. Гибридизация атомных орбиталей связана с квантово-химическим процессом перестройки. Орбитали в сравнении с исходными атомами имеют иное строение. Суть гибридизации заключается в том, что тот электрон, который располагается рядом с ядром связанного атома, определяется не конкретной атомной орбиталью, а их совокупностью с равным главным квантовым числом. В основном данный процесс касается высших, близких по энергии атомных орбиталей, имеющих электроны.

Специфика процесса

Типы гибридизации атомов в молекулах зависят от того, как происходит ориентация новых орбиталей. По типу гибридизации можно определить геометрию иона либо молекулы, предположить особенности химических свойств.

Типы гибридизации

Такой тип гибридизации, как sp, представляет собой линейную структуру, угол между связями составляет 180 градусов. Примером молекулы с подобным вариантом гибридизации является BeCl 2 .

Следующий тип гибридизации - sp 2 . Молекулы характеризуются треугольной формой, угол между связями составляет 120 градусов. Типичным примером такого варианта гибридизации является BCl 3 .

Тип гибридизации sp 3 предполагает тетраэдрическое строение молекулы, типичным примером вещества с данным вариантом гибридизации является молекула метана CH 4 . Валентный угол в таком случае составляет 109 градусов 28 минут.

В гибридизации принимают непосредственное участие не только парные электроны, но и неразделенные пары электронов.

Гибридизация в молекуле воды

К примеру, в молекуле воды между атомом кислорода и атомами водорода существуют две ковалентные полярные связи. Кроме того, сам атом кислорода обладает двумя парами внешних электронов, которые не принимают участия в создании химической связи. Эти 4 электронные пары в пространстве занимают определенное место вокруг кислородного атома. Так как все они обладают одинаковым зарядом, в пространстве они отталкиваются, электронные облака находятся друг от друга на существенном расстоянии. Тип гибридизации атомов в данном веществе предполагает изменение формы атомных орбиталей, происходит их вытягивание и выстраивание к вершинам тетраэдра. В результате молекула воды приобретает угловую форму, между связями кислород-водород валентный угол составляет 104,5 o .

Чтобы предсказать тип гибридизации, можно воспользоваться донорно-акцепторным механизмом образования химической связи. В результате осуществляется перекрытие свободных орбиталей элемента с меньшей электроотрицательность, а также орбиталей элемента с большей электрической отрицательностью, на которой находится пара электронов. В процессе составления электронной конфигурации атома учитывается их степень окисления.

Правила выявления вида гибридизации

Для того чтобы определить тип гибридизации углерода, можно использовать определённые правила:

  • выявляют центральный атом, вычисляют количество σ-связей;
  • ставят в частице степени окисления атомов;
  • записывают электронную конфигурацию главного атома в требуемой степени окисления;
  • составляют схему распределения по орбиталям валентных электронов, спаривая электроны;
  • выделяют орбитали, которые принимают непосредственно участие в образовании связи, находят неспаренные электроны (при недостаточном для гибридизации количестве валентных орбиталей применяют орбитали следующего энергетического уровня).

Геометрия молекулы определяется типом гибридизации. На нее не влияет присутствие пи-связей. В случае дополнительного связывания возможно изменение валентного угла, причина состоит во взаимном отталкивании электронов, образующих кратную связь. Так, в молекуле оксида азота (4) при sp 2 -гибридизации происходит возрастание валентного угла со 120 градусов до 134 градусов.

Гибридизация в молекуле аммиака

Неразделенная пара электронов оказывает влияние на результирующий показатель дипольного момента всей молекулы. В аммиаке тетраэдрическое строение вместе с неразделенной парой электронов. Ионность связи азот-водород и азот-фтор имеют показатели 15 и 19 процентов, длины определены в 101 и 137 пм соответственно. Таким образом, в молекуле фторида азота должен быть больший дипольный момент, но результаты эксперимента свидетельствуют об обратном.

Гибридизация в органических соединениях

Для каждого класса углеводородов характерен свой тип гибридизации. Так, при образовании молекул класса алканов (предельных углеводородов) все четыре электрона атома углерода образуют гибридные орбитали. При их перекрывании образуется 4 гибридных облака, вытраиваемых к вершинам тетраэдра. Далее их вершины перекрываются с негибридными s-орбиталями водорода, образуя простую связь. Для насыщенных углеводородов характерна sp 3 -гибридизация.

У ненасыщенных алкенов (их типичным представителем является этилен) в гибридизации принимают участие только три электронных орбитали - s и 2 p, три гибридных орбитали образуют в пространстве форму треугольника. Негибридные p-орбитали перекрываются, создавая в молекуле кратную связь. Этот класс органических углеводородов характеризуется sp 2 -гибридным состоянием углеродного атома.

Алкины отличаются от предыдущего класса углеводородов тем, что в процессе гибридизации участвуют всего два вида орбиталей: s и p. Оставшиеся у каждого атома углерода два негибридных p-электрона перекрываются в двух направлениях, образуя две кратные связи. Данный класс углеводородов характеризуется sp-гибридным состоянием углеродного атома.

Заключение

Благодаря определению вида гибридизации в молекуле можно объяснить строение разных неорганических и органических веществ, предсказать возможные химические свойства конкретного вещества.

Гибридизацией называется гипотетический процесс смешения различного типа, но близких по энергии орбиталей данного атома с возникновением того же числа новых (гибридных 1) орбиталей, одинаковых по энергии и форме.

Гибридизация атомных орбиталей происходит при образовании ковалентных связей.

Гибридные орбитали имеют форму объёмной несимметричной восьмёрки, сильно вытянутой в одну сторону от атомного ядра: .

Такая форма обусловливает более сильное, чем в случае чистых атомных орбиталей, перекрывание гибридных орбиталей с орбиталями (чистых или гибридных) других атомов и приводит к образованию более прочных ковалентных связей. Поэтому энергия, затрачиваемая на гибридизацию атомных орбиталей, с избытком компенсируется выделением энергии за счёт образования более прочных ковалентных связей с участием гибридных орбиталей. Название гибридных орбиталей и тип гибридизации определяются числом и типом участвующих в гибридизации атомных орбиталей, например: sp -, sp 2 -, sp 3 -, sp 2 d - или sp 3 d 2 -гибридизация .

Направленность гибридных орбиталей, а следова­тельно, и геометрия молекулы зависят от типа гибридизации. На практике обычно решается обратная задача: вначале экспери­ментально устанавливается геометрия молекулы, после чего описывается тип и форма гибридных орбиталей, участвующих в её образовании.

sp -Гибридизация. Две гибридных sp - орбитали в результате взаимного отталкивания располагаются относительно атомного ядра таким образом, что угол между ними составляет 180° (рис. 7).

Рис. 7. Взаимное расположение в пространстве двух sp - гибридных орбиталей одного атома: а - поверхности, охватывающие области пространства, где вероятность пребывания электрона составляет 90 %; б - условное изображение.

В результате такого расположения гибридных орбиталей молекулы состава АХ 2 , где А является центральным атомом, имеют линейное строение , то есть ковалентные связи всех трёх атомов располагаются на одной прямой. Например, в состоянии sp - гибридизации находятся валентные орбитали атома бериллия в молекуле ВеС1 2 (рис. 8). Линейную конфигурацию вследствие sp - гибридизации валентных орбиталей атомов имеют также молекулы ВеН 2 , Ве(СН 3) 2 , ZnCl 2 , CO 2 , HC≡N и ряд других.

Рис. 8. Трёхатомная линейная молекула хлорида бериллия ВеС1 2 (в газообразном состоянии): 1 - 3р- орбиталь атома Cl; 2 - две sp - гибридные орбитали атома Be.

s р 2 -Гибридизация. Рассмотрим гибридизацию одной s - и двух р- орбиталей. В этом случае в результате линейной комбинации трёх орбиталей возникают три гибридные s р 2 -орбитали. Они располагаются в одной плоскости под углом 120° друг к другу (рис. 9). s р 2 -Гибридизация характерна для многих соединений бора, который, как показано выше, в возбуждённом состоянии имеет три неспаренных электрона: один s - и два р -электрона. При перекрывании s р 2 -орбиталей атома бора с орбиталями других атомов образуются три ковалентные связи, равноценные по длине и энергии. Молекулы, в которых валентные орбитали центрального атома находятся в состоянии s р 2 -гибридизации, имеют треугольную конфигурацию. Углы между ковалентными связями равны 120°. В состоянии s р 2 -гибридизации находятся валентные орбитали атомов бора в молекулах BF 3 , BC1 3 , атомов углерода и азота в анионах СО 3 2 - , NO 3 - .

Рис. 9. Взаимное расположение в пространстве трёх s р 2 -гибридных орбиталей.

s р 3 -Гибридизация. Очень большое распространение имеют вещества, в молекулах которых центральный атом содержит четыре s р 3 -орбитали, образующиеся в результате линейной комбина­ции одной s - и трёх р -орбиталей. Эти орбитали располагаются под углом 109˚28′ друг к другу и направлены к вершинам тетраэдра, в центре которого находится атомное ядро (рис. 10 а).

Образование четырёх равноценных ковалентных связей за счёт перекрывания s р 3 -орбиталей с орбиталями других атомов характерно для атомов углерода и других элементов IVA-группы; это обуславлиает тетраэдрическую структуру молекул (СН 4 , CC1 4 , SiH 4 , SiF 4 , GeH 4 , GeBr 4 и др).

Рис. 10. Влияние несвязывающих электронных пар на геометрию молекул:

a – метана (несвязывающих электронных пар нет);

б – аммиака (одна несвязывающая электронная пара);

в – воды (две несвязывающие пары).

Неподелённые электронные пары гибридных орбита лей . Во всех рассмотренных примерах гибридные орбитали были "заселены" одиночными электронами. Однако нередки случаи, когда гибридная орбиталь "заселена" электронной парой. Это оказывает влияние на геометрию молекул. Поскольку несвязывающая электронная пара испытывает воздействие ядра только своего атома, а связывающая электронная пара находится под действием двух атомных ядер, несвязывающая электронная пара находится ближе к атомному ядру, чем связывающая. В результате этого несвязывающая электронная пара сильнее отталкивает связывающие электронные пары, чем те отталкивают друг друга. Графически для наглядности большую отталкивающую силу, действующую между несвязывающей и связывающими электронными парами, можно изобразить большей по объёму электронной орбиталью несвязывающей пары. Несвязывающая электронная пара имеется, например, у атома азота в молекуле аммиака (рис. 10 б ). В результате взаимодействия со связывающими электронными парами валентные углы Н-N-Н сокращаются до 107,78° по сравнению со 109,5°, характерными для правильного тетраэдра.

Ещё большее отталкивание испытывают связывающие электронные пары в молекуле воды, где у атома кислорода имеются две несвязывающие электронные пары. В результате чего валентный угол Н-О-Н в молекуле воды равен 104,5° (рис. 10 в ).

Если несвязывающая электронная пара в результате образования ковалентной связи по донорно-акцепторному механизму превращается в связывающую, то силы отталкивания между этой связью и другими ковалентными связями в молекуле выравниваются; выравниваются и углы между этими связями. Это происходит, например, при образовании катиона аммония:

Участие в гибридизации d -орбиталей. Если энергия атомных d - орбиталей не очень сильно отличается от энергий s - и р- орбиталей, то они могут участвовать в гибридизации. Самым распространённым типом гибридизации с участием d - орбиталей является s р 3 d 2 - гибридизация, в результате которой образуются шесть равноценных по форме и энергии гибридных орбиталей (рис. 11 а ), расположенных под углом 90˚ друг к другу и направленных к вершинам октаэдра, в центре которого находится атомное ядро. Октаэдр (рис. 11 б ) является правильным восьмигранником: все рёбра в нём равной длины, все грани – правильные треугольники.

Рис. 11. s р 3 d 2 - Гибридизация

Реже встречается s р 3 d - гибридизация с образованием пяти гибридных орбиталей (рис. 12 а ), направленных к вершинам тригональной бипирамиды (рис. 12 б ). Тригональная бипирамида образуется соеинением двух равнобедренных пирамид общим основанием - правильным треугольником. Полужирными штрихами на рис. 12 б показаны рёбра равной длины. Геометрически и энергетически s р 3 d - гибридные орбитали неравноценны: три «экваториальные» орбитали направлены к вершинам правильного треугольника, а две «аксиальные» - вверх и вниз перпендикулярно плоскости этого треугольника (рис. 12в ). Углы между «экваториальными» орбиталями равны 120°, как при s р 2 - гибридизации. Угол между «аксиальной» и любой из «экваториальных» орбиталей равны 90°. Соответственно этому ковалентные связи, которые образуются с участием «экваториальных» орбиталей отличаются по длине и энергии от связей, в образовании которых участвуют «аксиальные» орбитали. Например, в молекуле РС1 5 «аксиальные» связи имеют длину 214 пм, а «экваториальные» - 202 пм.

Рис. 12. s р 3 d - Гибридизация

Таким образом, рассматривая ковалентные связи как результат перекрывания атомных орбиталей, можно объяснить геометрию возникающих при этом молекул и ионов, которая зависит от числа и типа атомных орбиталей, участвующих в образовании связей. Концепцию гибридизации атомных орбиталей, необходимо понимать, что гибридизация представляет собой условный приём, позволяющий наглядно объяснить геометрию молекулы посредством комбинации АО.

Гибридизация атомных орбиталей

Американский ученый Л. Полинг выдвинул идею о гибридизации атомных орбиталей. Согласно этой идее, если у атома, вступающего в химическую связь, имеются разные атомные орбитали (АО) (s-, p-, d- или f-АО), то в процессе образования химической связи происходит гибридизация АО. Т.е. из разных АО образуются одинаковые (эквивалентные) АО. У атома гибридизуются орбитали, которые имеют близкие значения энергий. Идея о гибридизации АО – это удобный и наглядный прием описания сложных процессов, происходящих при образовании химических соединений. Форма гибридной АО отличается от формы исходных АО (рис. 4.3).

Рис. 4.3. Атомная sp-гибридная орбиталь

В гибридной АО электронная плотность смещается в одну сторону от ядра. При взаимодействии гибридной орбитали с АО другого атома происходит перекрывание в области максимальной электронной плотности, что приводит к повышению энергии связи. Это повышение энергии связи компенсирует энергию, требуемую на образование гибридной орбитали. В результате химические связи, образованные гибридными орбиталями, прочнее, а полученная молекула более устойчива.

Если в химическую связь вступает атом, у которого на внешнем валентном уровне имеются один s- и один p-электроны, то у данного атома в процессе образования связи происходит sp-гибридизация АО (рис. 4.4).


Рис. 4.4. Схема sp-гибридизации

Если у атома, вступающего в химическую связь, на внешней оболочке имеются один s- и два p-электрона, то помимо sp-гибридизации может происходить sp 2 -гибридизация АО этого атома (рис. 4.5).


Рис. 4.5. Схема sp 2 -гибридизации

У атома, имеющего на внешней оболочке один s- и три р-электрона, при химическом взаимодействии помимо sp- и sp 2 -гибридизации, может происходит sp 3 -гибридизация этих АО (рис. 4.6).


Рис. 4.6. Схема sp 3 -гибридизации

Возможны также более сложные виды гибридизации с участием d-орбиталей атомов (табл. 4.3).

Как видно из рис 4.4-4.6, гибридные облака в пространстве располагаются симметрично относительно друг друга, что уменьшает их взаимное отталкивание и соответственно понижает энергию молекул.

Таблица 4.3

Пространственная конфигурация некоторых соединений

4.1.4.2. Образование σ-, π- и δ-связей

В зависимости от направления перекрывания электронных облаков образуются s-, p- и δ-связи.

Связь, образованная перекрыванием АО по линии, соединяющей ядра взаимодействующих атомов, называется s-связью. Сигма-связь может возникать при перекрывании двух s-орбиталей (рис. 4.7), s- и p-орбиталей, p-орбиталей между собой, d-орбиталей, а также d- и s-орбиталей, d- и p-орбиталей, а также перекрыванием гибридных орбиталей с другими видами орбиталей и между собой. Сигма-связь обычно охватывает два атома и не простирается за их пределы, поэтому является локализованной двухцентровой связью.

s-s p-p p-s
sp n -s d-sp n sp n -sp n

Рис. 4.7. Перекрывание атомных орбиталей при образовании σ-связей

Связь, образованная перекрыванием негибридных р- и d-АО по обе стороны линии, соединяющей ядра атомов (боковые перекрывания), называется π-связью. Пи-связь может образовываться при перекрывании р-р-орбиталей, р-d – орбиталей, d- d-орбиталей (рис. 4.8), а также f-p-, f-d- и f-f-орбиталей.

Рис. 4.8. Перекрывание атомных орбиталей при образовании π-связей

Связь, образованная перекрыванием d-орбиталей всеми четырьмя лепестками, называется δ-связью (рис. 4.9).

Соответственно, s-элементы могут образовывать только σ-связи, p-элементы – σ- и π-связи, d-элементы σ-, π-, и δ-связи, а f-элементы – σ-, π-, δ- и еще более сложные связи. В связи с меньшим перекрыванием АО прочность у π- и δ-связей ниже, чем у σ-связей.


Рис. 4.9. Направление перекрывания атомных d-орбиталей при образовании δ-связей

ГИБРИДИЗАЦИЯ - это явление взаимодействия между собой молекулярных орбиталей, близких по энергии и имеющих общие элементы симметрии, с образованием гибридных орбиталей с более низкой энергией.

Чем полнее в пространстве перекрываются друг с другом электронные облака, участвующие в химической связи, тем меньшим запасом энергии обладают электроны, находящиеся в области перекрывания и осуществляющие связь, и тем прочнее химическая связь между этими атомами

Иногда связь между атомами прочнее, чем этого можно было ожидать на основании расчета. Предполагается, что атомная орбиталь принимает форму, позволяющую ей более полно перекрываться с орбиталью соседнего атома. Изменить свою форму атомная орбиталь может, лишь комбинируясь с другими атомными орбиталями иной симметрии этого же атома. В результате комбинации различных орбиталей (s, p, d) возникают новые атомные орбитали промежуточной формы, которые называются гибридными .

Перестройка различных атомных орбиталей в новые орбитали, усредненные по форме называется гибридизацией .

Число гибридных орбиталей равно числу исходных. Так, при комбинации s- и р-орбиталей (sp-гиб­ридизация) возникают две гибридные орбитали, которые ориентируются под углом 180° друг к другу, рис.3, табл. 5 и 6.

(s+p)-орбитали Две sp- орбитали Две sp-гибридные

орбитали

Рисунок 3 – sp – Гибридизация валентных орбиталей


Таблица 6 – Образование гибридных орбиталей


Таблица 7 – Образование некоторых молекул V и VI периодов

Химическая связь, образуемая электронами гибридных орбиталей, прочнее связи с участием электронов негибридных орбиталей, так как при гибридизации перекрывание происходит в большей степени. Гибридные орбитали образуют только s-связи .

Подвергаться гибридизации могут орбитали, которые имеют близкие энергии. У атомов с малым значением заряд ядра для гибридизации пригодны только s– и р –орбитали. Это наиболее характерно для элементов второго периода II – VI групп, табл. 6 и 7.

В группах сверху вниз с увеличением радиуса атома способность образовывать ковалентные связи ослабевавает, усиливается различие в энергиях s - и р-электронов, уменьшается возможность их гибридизации.

Электронные орбитали, участвующие в образовании связей, и их пространственная ориентация определяют геометрическую форму молекул.

Линейная форма молекул . Соединения, имеющие линейную форму молекул, образуются при перекрывании:

1. Двух s– орбиталей (s – s связь): Н 2 , Na 2 , K 2 и др.

2. s - и р–орбиталей (s – р связь): НС1, НВr и др.

3. Двух р– орбиталей (р – р связь): F 2 , C1 2 , Вr 2 и т.д.

s–s s–p р–р

Рисунок 4 – Линейные молекулы

Линейную форму молекул образуют также атомы некоторых элементов II группы с атомами водорода или галогенов (ВеН 2 , ВеГ 2 , ZnГ 2). Рассмотрим образование молекул ВеС1 2 . Атом бериллия в возбужденном состоянии имеет два неспаренных электрона (2s l и 2р 1), следовательно, происходит sp–гибридизация, при которой образуются две sp-гибридные орбитали, расположенные относительно друг друга под углом 180° (см гибридизацию орбиталей). При взаимодействии бериллия с галогенами происходит перекрывая двух sp–гибридных орбиталей атома бериллия с р–орбиталями двух атомов хлора, в результате образуется молекула линейной формы, рис. 5.

Рисунок 5 – Линейная молекула BeCl 2

Треугольная форма молекул имеет место при образо­вании галогенидов бора, алюминия. Возбужденный атом бо­та имеет три неспаренных электрона (2s 1 и 2р 2), При образовании химических связей происходит sp 2 -гибридизация и образуются три sp 2 - гибиридные орбитали, которые лежат в одной плоскости и ориентированы друг к другу под углом 120°, рис. 6.

(s+p+p)- три sp 2 - гибрид­ные

орбитали орбитали

Рисунок 6 – sp 2 –Гибридизация валентных орбиталей (а) и

треугольная молекула ВСl 3 (б)

При взаимодействии бора с хлором происходит перекрывание трех sр 2 -гибридных орбиталей атома бора с р-орбиталями трех атомов хлора, в результате образуется молекула, имеющая форму плоского треугольника. Валентный угол в молекуле ВСl 3 равен 120°.

Тетраэдрическая форма молекулы характерна для соединений элементов IV группы главной подгруппы с галогенами, водородом. Так, атом углерода в возбужденном со­стоянии имеет четыре неспаренных электрона (2s 1 и 2р 3) следовательно, происходит sp-гибридизация, при которой образуются четыре гибридные орбитали, расположенные друг к другу под углом 109,28°, рис. 7.

(s+p+p+p)- четыре sp 3 -гибрид­ные

орбитали орбитали

Рисунок 7 – sp 3 –Гибридизация валентных орбиталей (а) и

тетраэдрическая молекула СН 4 (б)

При перекрывании четырех sp 3 -гибридных орбиталей атома углерода и s-орбиталей четырех атомов водорода образуется молекула метана, которая имеет форму тетраэдра. Валентный угол равен 109,28°.

Рассмотренные геометрические формы молекул (линейные, треугольные, тетраэдрические) являются идеальными (правило Гиллеспи).

В отличие от выше рассмотренных соединений молекулы элементов V и VI групп главных подгрупп имеют валентные неподеленные пары электронов, поэтому углы между связями оказываются меньшими по сравнению с идеальным молекулами.

Пирамидальная форма молекул имеет место при образовании водородных соединений элементов V групп главной подгруппы. При образовании химической связи, например, у атома азота также как и у атома углерода происходит sp 3 -гибридизация и образуется четыре sp 3 -гибридные орбитали, которые ориентированы под углом 109,28 о друг к другу. Но в отличие от атома углерода у атома азота в гибридизации принимают участие не только одноэлектронные орбитали (2р 3), но и двухэлектронная (2s 2). Поэтому из четырех sp 3 -гибридных орбиталей на трех находятся по одному электрону (одноэлектронная орбиталь), эти орбитали образуют связи с тремя атомами водорода. Четвертая орбиталь с неподелениой парой электронов не принимает участия в образовании связи. Молекула NH 3 имеет форму пирамиды, рис. 8.

Рисунок 8 – Пирамидальная молекула аммиака

В вершине пирамиды находится атом азота, а в углах (треугольника) основания – атомы водорода. Валентный угол равен 107,3°. Отклонение значения угла от тетраэдрического (109,28°) обусловлено отталкиванием между неподеленной парой электронов на четвертой sp 3 -гибридной ор­битали и связывающими парами на трех остальных орбиталях, т.е. sp 3 -гибридная орбиталь с неподеленной парой электронов отталкивает в направлении от себя три осталь­ные орбитали связи N–H, уменьшая угол до 107,3°.

В соответствии с правилом Гиллеспи: если централь­ный атом относится к элементам третьего или последующих периодов, а концевые атомы принадлежат менее электроотри­цательным элементам, чем галогены, то образование связей осуществляется через чистые р - орбитали и валентные углы становятся » 90°, следовательно, у аналогов азота (Р, As, Sb) гибридизация орбиталей в молекулах водородных соединений не наблюдается. Например, в образовании молекулы фосфина (РН 3) участвуют три неспаренных р-электрона (3s 2 и 3р 3), электронные орбитали которых расположены в трех взаимно перпендикулярных направле­ниях, и s-электроны трех атомов водо­рода. Связи располагаются вдоль трех осей р-орбиталей. Образовавшиеся молекулы имеют, как и молекулы NН 3 , пирамидальную форму, но в отличие от молекулы NН 3 , в молекуле РН 3 валентный угол равен 93,3°, а в соеди­нениях AsH 3 и SbH 3 – соответственно 91,8 и 91,3°, рис. 9 и табл. 4.

Рисунок 9 – Молекула РН 3

Неподеленная пара электронов будет занимать нес­вязывающую s- орбиталь.

Угловую форму молекул образуют водородные соединения элементов VI группы главной подгруппы. Рассмотренные особенности образования связей в соединениях элементов V группы характерны и для водородных соединений элементов VI группы. Так, в молекуле воды атом кислорода, так же как и атом азота, находится в состоянии sp 3 -гибридизаци. Из четырех sp 3 -гибридных орбитам на двух находится по одному электрону, эти орбитали образуют связи с двумя атомами водорода.

Две другие из четырех sp 3 -гибридных орбиталей содержат по неподеленной паре электронов и не принимав участия в образовании связи.

Молекула Н 2 О имеет угловую форму, валентный угол равен 104,5°. Отклонение значения угла от тетраэдрического в еще большей степени обусловлено отталкиванием от двух неподеленных пар электронов, рис. 10.

Рисунок 10 – Угловая молекула воды

Угловую форму молекул имеют H 2 S, H 2 Se, H 2 Te, только у аналогов кислорода образование связей в соединенн Н 2 Э осуществляется через чистые р-орбитали (правило Гиллеспи), поэтому валентные углы составляют »90°. Так, в молекулах H 2 S, H 2 Se, H 2 Te они соответственно равны 92; 91; 89,5°.

Таблица 8 – Молекулы водородных соединений элементов 2-го периода

Гибридизация – выравнивание (смешивание) атомных орбиталей (s и р ) с образованием новых атомных орбиталей, называемых гибридными орбиталями .

Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома. Электронное облако – это область пространства, в которой с высокой вероятностью может быть обнаружен электрон

Sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуются две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра центрального атома. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

Sp2-гибридизация

Sp2-гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуются три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

В таблице приведены примеры соответствия наиболее распространённых типов гибридизации и геометрической структуры молекул в предположении, что все гибридные орбитали участвуют в образовании химических связей (отсутствуют неподелённые электронные пары)

Тип гибридизации

Число гибридных орбиталей

Геометрия

Структура

Примеры

Линейная

BeF 2 , CO 2 , NO 2 +

sp 2

Треугольная

BF 3 , NO 3 - , CO 3 2-

sp 3

Тетраэдрическая

CH 4 , ClO 4 - , SO 4 2- , NH 4 +

dsp 2

Плоскоквадратная

Ni(CO) 4 , 2-

sp 3 d

Гексаэдрическая

sp 3 d 2 , d 2 sp 3

Октаэдрическая

SF 6 , Fe(CN) 6 3- , CoF 6 3-

4. Электровалентная, ковалентная, донорно-акцепторная, водородная связи. Электронное строение σ и π связи. Основные характеристики ковалентной связи: энергия связи, длина, валентный угол, полярность, поляризуемость.

Если между двумя атомами или двумя группами атомов имеет место электростатическое взаимодействие приводящее к сильному притяжению и образованию химической связи, то такая связь называется электровалентной или гетерополярной.

Ковалентная связь- химическая связь, образованная перекрытием пары валентных электронных облаков. Обепечивающие связь электронные облака называется общей электронной парой.

Донорно-акцепторная связь –это химическая связь между двумя атомами или группой атомов, осуществляемая за счет неподеленной пары электронов одного атома (донора) и свободного уровня другого атома (акцептора). Это связь отличается от ковалентной связи происхождением связи электронов.

Водородная связь -это вид химического взаимодейсвия атомов в молекуле отличающийся тем, что существенное участие в нем принимает атом водорода, уже связанный ковалентной связью с другими атомами

σ связь-это первая и более прочная связь, которая образуется при перекрывании электронных облаков в направлении прямой, соединяющий центры атомов.

σ связь-это обычные ковалентные связи атомов углерода с атомами водорода. Молекулы предельных углеродов содержат только σ связи.

π связь это менее прочная связь, которая образуется при перекрывании электронных плоскости атомов ядер

Электроны π и σ связи теряют свою принадлежность к определенному атому.

Особенности σ и π связи: 1)вращение атомов углерода в молекуле возможна в случае, если они соединены σ связью 2)появление π связи лишает атома углерода в молекуле в свободного вращения.

Длина связи- это расстояние между центрами связанных атомов.

Валентный угол- это угол между двумя связями, имеющий общий атом.

Энергия связи- энергия, выделяющаяся при образовании хим. связи и характеризующаяся ее прочность

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные. Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

5. Ионная связь (электровалентная)- очень прочная химическая связь, образующаяся между атомами с большой разностью электроотрицательностей, при которой общая электронная пара переходит преимущественно к атому с большей электроотрицательностью. Ковалентная связь – возникает за счет обобществления электронной пары посредством обменного механизма, когда каждый из взаимодействующих атомов поставляет по одному электрону. Донорно акцепторная связь (координационная связь) химическая связь между двумя атомами или группой атомов, осуществляемая за счет неподеленной пары электронов одного атома (донора) и свободной орбитали другого атома (акцептора).пример NH4 Для возникновения водородных связей важно, чтобы в молекулах вещества были атомы водорода, связанные с небольшими, но электроотрицательными атомами, например: O, N, F. Это создает заметный частичный положительный заряд на атомах водорода. С другой стороны, важно, чтобы у электроотрицательных атомов были неподеленные электронные пары. Когда обедненный электронами атом водорода одной молекулы (акцептор) взаимодействует с неподеленной электронной парой на атоме N, O или F другой молекулы (донор), то возникает связь, похожая на полярную ковалентную. При образовании ковалентной связи в молекулах органических соединений общая электронная пара заселяет связывающие молекулярные орбитали, имеющие более низкую энергию. В зависимости от формы МО – σ-МО или π-МО – образующиеся связи относят к σ- или p-типу. σ-Связь – ковалентная связь, образованная при перекрывании s-, p- и гибридных АО вдоль оси, соединяющей ядра связываемых атомов (т. е. при осевом перекрывании АО) . π-Связь – ковалентная связь, возникающая при боковом перекрывании негибридных р-АО. Такое перекрывание происходит вне прямой, соединяющей ядра атомов.
π-Связи возникают между атомами, уже соединенными σ-связью (при этом образуются двойные и тройные ковалентные связи) . π-Связь слабее σ-связи из-за менее полного перекрывания р-АО. Различное строение σ- и π-молекулярных орбиталей определяет характерные особенности σ- и π-связей. 1.σ-Связь прочнее π-связи. Это обусловлено более эффективным осевым перекрыванием АО при образовании σ-МО и нахождением σ-электронов между ядрами. 2.По σ-связям возможно внутримолекулярное вращение атомов, т. к. форма σ-МО допускает такое вращение без разрыва связи (cм аним. Картинку внизу)) . Вращение по двойной (σ + π) связи невозможно без разрыва π-связи! 3.Электроны на π-МО, находясь вне межъядерного пространства, обладают большей подвижностью по сравнению с σ-электронами. Поэтому поляризуемость π-связи значительно выше, чем σ-связи.

Характерные свойства ковалентной связи - направленность, насыщаемость, полярность, поляризуемость - определяют химические и физические свойства соединений.

Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.

Насыщаемость - способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные (неполярные - двухатомная молекула состоит из одинаковых атомов (H 2 , Cl 2 , N 2) и электронные облака каждого атома распределяются симметрично относительно этих атомов; полярные - двухатомная молекула состоит из атомов разных химических элементов, и общее электронное облако смещается в сторону одного из атомов, образуя тем самым асимметрию распределения электрического заряда в молекуле, порождаядипольный момент молекулы).

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

6.Номенклатура представляет собой систему правил, позволяющих дать однозначное название каждому индивидуальному соединению. Для медицины знание общих правил номенклатуры имеет особенно большое значение, так как в соответствии с ними строятся названия многочисленных лекарственных средств. В настоящее время общепринята систематическая номенклатура ИЮПАК (IUPAC - Международный союз теоретической и прикладной химии)*.

Однако до сих пор сохраняются и широко применяются (особенно в медицине) тривиальные (обыденные) и полутривиальные названия, использовавшиеся еще до того, как становилось известным строение вещества. В этих названиях могут отражаться природные источники и способы получения, особо заметные свойства и области применения. Например, лактоза (молочный сахар) выделена из молока (от лат. lactum - молоко), пальмитиновая кислота - из пальмового масла, пировиноградная кислота получена при пиролизе виноградной кислоты, в названии глицерина отражен его сладкий вкус (от греч. glykys - сладкий).

Тривиальные названия особенно часто имеют природные соединения - аминокислоты, углеводы, алкалоиды, стероиды. Употребление некоторых укоренившихся тривиальных и полутривиальных названий разрешается правилами ИЮПАК. К таким названиям относятся, например, «глицерин» и названия многих широко известных ароматических углеводородов и их производных.

Рациональная номенклатура предельных углеводородов

В отличие от тривиальной названия основываются на строении молекул. Названия сложных структур состовляют из названия блоков те радикалов связанных с основным навиболее важным узлом молекулы по этой номенклатуре алканы рассматриваются как производные метана у которого атомы водорода замещены соответствующими радикалами. Выбор метанового углерода произвольный поэтому 1 соедин может иметь неск названий.по этой номенклатуре алкены рассматривают как производные этилена а алкины-ацетилена.

7. Гомология органических соединений или закон гомологов - состоит в том, что вещества однойхимической функции и одинакового строения, отличающиеся друг от друга по своему атомному составу лишьна nСН 2, оказываются сводными и во всем своем остальном хим. характере, а различие их физическихсвойств возрастает или вообще изменяется правильно по мере увеличения разницы в составе,определяемой числом n групп СН 2. Такие хим. сходственные соединения образуют так наз. гомологическийряд, атомный состав всех членов которого возможно выразить общею формулою в зависимости от составапервого члена ряда и числа атомов углерода; органические вещества одного названия типо алканы только.

Изомеры- соединения имеющие одинаковый состав но разное строение и свойства.

8. Нуклеоф и льные и электроф и льные реаг е нты . Участвующие в замещения реакциях реагенты подразделяются на нуклеофильные и электрофильные. Нуклеофильные реагенты, или нуклеофилы, предоставляют свою паруэлектронов на образование новой связи и вытесняют из молекулы RX уходящую группу (X) с парой электронов, образовывавшей старую связь, например:

(где R - органический радикал).

К нуклеофилам относятся отрицательно заряженные ионы (Hal - , ОН - , CN - , NO 2 - , OR - , RS - , NH 2 - , RCOO - и др.), нейтральные молекулы, обладающие свободной парой электронов (например, Н 2 О, NH3, R 3 N, R 2 S, R 3 P, ROH, RCOOH), и металлоорганич. соединения R - Me с достаточно поляризованной связью С - Me + , т. е. способные быть донорами карбанионов R - . Реакции с участием нуклеофилов (нуклеофильное замещение) характерны главным образом Для алифатических соединений, например гидролиз (ОН - , Н 2 О), алкоголиз (RO - , ROH), ацидолиз (RCOO - , RСООН), аминирование (NH - 2 , NH 3 , RNH 2 и др.), цианирование (CN -) и т. д.

Электрофильные реагенты, или электрофилы, при образовании новой связи служат акцепторами пары электронов и вытесняют уходящую группу в виде положительно заряженной частицы. К электрофилам относятся положительно заряженные ионы (например, Н + , NO 2 +), нейтральные молекулы с электронным дефицитом, например SO 3 , и сильно поляризованные молекулы (СН 3 СОО - Br + и др.), причём поляризация особенно эффективно достигаетсякомплексообразованием с коэффициентами Льюиса (Hal + - Hal - · А, R + - Cl - · A, RCO + - Cl - · А, где A= A1C1 3 , SbCl 5 , BF 3 и др.). К реакциям с участием электрофилов (электрофильное замещение) относятся важнейшие реакцииароматических углеводородов (например, нитрование, галогенирование, сульфирование, реакция Фриделя - Крафтса):

(E + = Hal + , NO + 2 , RCO + , R + и др.)

В определённых системах реакции с участием нуклеофилов осуществляются в ароматическом ряду, а реакции с участием электрофилов - в алифатическом (чаще всего в ряду металлоорганических соединений).

53. взаимодействие оксосоединений с металлорганическими (кетон или альдегид плюс металорганика)

Реакции широко используются для получения спиртов.при присоединении к формальдегиду реактива гриньяра(R-MgX) образуется первичный спирт, другим альдегидом вторичные, а кетонам тритичные спирты



Последние материалы раздела:

Чем атом отличается от молекулы Сравнение атома и молекулы
Чем атом отличается от молекулы Сравнение атома и молекулы

Еще много веков назад люди догадывались, что любое вещество на земле состоит из микроскопических частиц. Прошло какое-то время, и ученые доказали,...

Что такое молекула и чем она отличается от атома Что такое изотопы
Что такое молекула и чем она отличается от атома Что такое изотопы

Еще много веков назад люди догадывались, что любое вещество на земле состоит из микроскопических частиц. Прошло какое-то время, и ученые доказали,...

Чем отличаются изотопы одного элемента друг от друга Чем атом отличается от молекулы
Чем отличаются изотопы одного элемента друг от друга Чем атом отличается от молекулы

Вся материя вокруг нас, которую мы видим, состоит из различных атомов. Атомы отличаются друг от друга строением, размером и массой. Существует...